TY - JOUR
T1 - Diverse Reactivity of Diazatitanacyclohexenes
T2 - Coupling Reactions of 2 H-Azirines Mediated by Titanium(II)
AU - Desnoyer, Addison N.
AU - See, Xin Yi
AU - Tonks, Ian A.
N1 - Publisher Copyright:
© 2018 American Chemical Society.
PY - 2018/12/10
Y1 - 2018/12/10
N2 - 2H-Azirines are versatile coupling partners for the synthesis of N-heterocycles. Herein, we present our studies on the reactivity of Cp2Ti(BTMSA) (1; BTMSA = bis(trimethylsilyl)acetylene) with a variety of azirines. In all the cases examined, the initial organometallic products formed are diazatitanacyclohexenes, presumably formed via oxidative addition of Ti(II) into the C-N bond of the azirine to form an azatitanacyclobutene intermediate, followed by C=N insertion of a second equivalent of azirine into the Ti-C bond to form the observed products. Diazatitanacyclohexene 3, bearing phenyl substituents and derived from 2,3-diphenyl-2H-azirine, fragments to form an azabutadiene and nitrile, which is shown to be catalytic in the presence of excess 2,3-diphenyl-2H-azirine. H-substituted complex 8, derived from 3-phenyl-2H-azirine, decomposes via protonolysis of the Cp ligands. In contrast, the methyl-substituted diazatitanacyclohexene 10, derived from 2-methyl-3-phenyl-2H-azirine, is thermally robust. Attempts to trap the putative azatitanacyclobutene intermediate with an alkyne were unsuccessful, resulting instead in the formation of titanacyclopentadiene (12) from coupling of alkyne with BTMSA. Initial reactivity studies found that 10 could be protonolyzed with AcOH to form mixtures of pyrrole and aziridine products, whereas reacting 10 with MeOH results solely in the formation of 2,4-dimethyl-3,5-diphenyl-1H-pyrrole.
AB - 2H-Azirines are versatile coupling partners for the synthesis of N-heterocycles. Herein, we present our studies on the reactivity of Cp2Ti(BTMSA) (1; BTMSA = bis(trimethylsilyl)acetylene) with a variety of azirines. In all the cases examined, the initial organometallic products formed are diazatitanacyclohexenes, presumably formed via oxidative addition of Ti(II) into the C-N bond of the azirine to form an azatitanacyclobutene intermediate, followed by C=N insertion of a second equivalent of azirine into the Ti-C bond to form the observed products. Diazatitanacyclohexene 3, bearing phenyl substituents and derived from 2,3-diphenyl-2H-azirine, fragments to form an azabutadiene and nitrile, which is shown to be catalytic in the presence of excess 2,3-diphenyl-2H-azirine. H-substituted complex 8, derived from 3-phenyl-2H-azirine, decomposes via protonolysis of the Cp ligands. In contrast, the methyl-substituted diazatitanacyclohexene 10, derived from 2-methyl-3-phenyl-2H-azirine, is thermally robust. Attempts to trap the putative azatitanacyclobutene intermediate with an alkyne were unsuccessful, resulting instead in the formation of titanacyclopentadiene (12) from coupling of alkyne with BTMSA. Initial reactivity studies found that 10 could be protonolyzed with AcOH to form mixtures of pyrrole and aziridine products, whereas reacting 10 with MeOH results solely in the formation of 2,4-dimethyl-3,5-diphenyl-1H-pyrrole.
UR - http://www.scopus.com/inward/record.url?scp=85053509595&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85053509595&partnerID=8YFLogxK
U2 - 10.1021/acs.organomet.8b00522
DO - 10.1021/acs.organomet.8b00522
M3 - Article
C2 - 31768086
AN - SCOPUS:85053509595
SN - 0276-7333
VL - 37
SP - 4327
EP - 4331
JO - Organometallics
JF - Organometallics
IS - 23
ER -