Abstract
This paper investigates the use of a collection of dispatchable heating, ventilation and air conditioning (HVAC) systems to absorb low-frequency fluctuations in renewable energy sources, especially in solar photo-voltaic (PV) generation. Given the uncertain and time-varying nature of solar PV generation, its probability distribution is difficult to be estimated perfectly, which poses a challenging problem of how to optimally schedule a fleet of HVAC loads to consume as much as local PV generation. We formulate a distributionally robust chance-constrained (DRCC) model to ensure that PV generation is consumed with a desired probability for a family of probability distributions, termed as an ambiguity set, built upon mean and covariance information. We benchmark the DRCC model with a deterministic optimization model and a stochastic programming model in a one-day simulation. We show that the DRCC model achieves constantly good performance to consume most PV generation even in the case with the presence of probability distribution ambiguity.
Original language | English (US) |
---|---|
Title of host publication | 2019 American Control Conference, ACC 2019 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 5857-5863 |
Number of pages | 7 |
ISBN (Electronic) | 9781538679265 |
DOIs | |
State | Published - Jul 2019 |
Event | 2019 American Control Conference, ACC 2019 - Philadelphia, United States Duration: Jul 10 2019 → Jul 12 2019 |
Publication series
Name | Proceedings of the American Control Conference |
---|---|
Volume | 2019-July |
ISSN (Print) | 0743-1619 |
Conference
Conference | 2019 American Control Conference, ACC 2019 |
---|---|
Country/Territory | United States |
City | Philadelphia |
Period | 7/10/19 → 7/12/19 |
Bibliographical note
Publisher Copyright:© 2019 American Automatic Control Council.