Distributed compression-estimation using wireless sensor networks

Jin Jun Xiao, Alejandro Ribeiro, Zhi-Quan Luo, Georgios B Giannakis

Research output: Contribution to journalArticlepeer-review

254 Scopus citations

Abstract

An overview of distributed compression and estimation using wireless sensor networks (WSNs) in which the main design goals are performance, bandwidth efficiency, scalability, and robustness to changes in the network or environment is given. First, deterministic parameter estimators are pursued and intertwining tasks of quantization are studied in low signal-to-noise ratio (SNR) situations where the noise standard deviation is in the order of the parameter's dynamic range and universal estimation where the sensor data and noise model are known. It is shown that in the low SNR regime, universal distributed estimators not only exist but also achieve performance close to that of estimators based on the original observations. The techniques and basic results that are derived for the parameter estimation paradigms are also extended to more general and practical signal models. A Bayesian estimation framework is laid out along with an application to the state estimation of dynamical stochastic processes.

Original languageEnglish (US)
Pages (from-to)27-41
Number of pages15
JournalIEEE Signal Processing Magazine
Volume23
Issue number4
DOIs
StatePublished - Jul 2006

Fingerprint Dive into the research topics of 'Distributed compression-estimation using wireless sensor networks'. Together they form a unique fingerprint.

Cite this