## Abstract

A recent result for a reaction-diffusion equation is that a population diffusing at any rate in an environment in which resources vary spatially will reach a higher total equilibrium biomass than the population in an environment in which the same total resources are distributed homogeneously. This has so far been proven by Lou for the case in which the reaction term has only one parameter, m(x), varying with spatial location x, which serves as both the intrinsic growth rate coefficient and carrying capacity of the population. However, this striking result seems rather limited when applies to real populations. In order to make the model more relevant for ecologists, we consider a logistic reaction term, with two parameters, r(x) for intrinsic growth rate, and K(x) for carrying capacity. When r(x) and K(x) are proportional, the logistic equation takes a particularly simple form, and the earlier result still holds. In this paper we have established the result for the more general case of a positive correlation between r(x) and K(x) when dispersal rate is small. We review natural and laboratory systems to which these results are relevant and discuss the implications of the results to population theory and conservation ecology.

Original language | English (US) |
---|---|

Pages (from-to) | 239-254 |

Number of pages | 16 |

Journal | Journal of Mathematical Biology |

Volume | 72 |

Issue number | 1-2 |

DOIs | |

State | Published - Jan 1 2016 |

### Bibliographical note

Funding Information:Research supported in part by NSF (USA), NSFC (PRC), “111-Project” (PRC) and “1000 Talents Project” (PRC).

Publisher Copyright:

© 2015, Springer-Verlag Berlin Heidelberg.

## Keywords

- Diffusion
- Mathematical ecology
- Spatial heterogeneity