Dispersal and spatial heterogeneity: single species

Donald L. DeAngelis, Wei Ming Ni, Bo Zhang

Research output: Contribution to journalArticlepeer-review

56 Scopus citations

Abstract

A recent result for a reaction-diffusion equation is that a population diffusing at any rate in an environment in which resources vary spatially will reach a higher total equilibrium biomass than the population in an environment in which the same total resources are distributed homogeneously. This has so far been proven by Lou for the case in which the reaction term has only one parameter, m(x), varying with spatial location x, which serves as both the intrinsic growth rate coefficient and carrying capacity of the population. However, this striking result seems rather limited when applies to real populations. In order to make the model more relevant for ecologists, we consider a logistic reaction term, with two parameters, r(x) for intrinsic growth rate, and K(x) for carrying capacity. When r(x) and K(x) are proportional, the logistic equation takes a particularly simple form, and the earlier result still holds. In this paper we have established the result for the more general case of a positive correlation between r(x) and K(x) when dispersal rate is small. We review natural and laboratory systems to which these results are relevant and discuss the implications of the results to population theory and conservation ecology.

Original languageEnglish (US)
Pages (from-to)239-254
Number of pages16
JournalJournal of Mathematical Biology
Volume72
Issue number1-2
DOIs
StatePublished - Jan 1 2016

Bibliographical note

Funding Information:
Research supported in part by NSF (USA), NSFC (PRC), “111-Project” (PRC) and “1000 Talents Project” (PRC).

Publisher Copyright:
© 2015, Springer-Verlag Berlin Heidelberg.

Keywords

  • Diffusion
  • Mathematical ecology
  • Spatial heterogeneity

Fingerprint

Dive into the research topics of 'Dispersal and spatial heterogeneity: single species'. Together they form a unique fingerprint.

Cite this