Directed evolution of new enzymes and pathways for environmental biocatalysis

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

Biocatalysis is important in both natural and engineered environments. The major global reactions in the biospheric cycling of carbon, nitrogen, and other elements are catalyzed by microorganisms. The global carbon cycle includes millions of organic compounds that are made by plants, microorganisms, and organic chemists. Most of those compounds are transformed by microbial enzymes. Degradative metabolism is known as catabolism and yields principally carbon dioxide, methane, or biomass. Microbial catabolic enzymes are a great resource for biotechnology. They are the building blocks for engineering novel metabolic pathways and evolving improved enzymes in the laboratory. Two multicomponent bacterial oxygenases, cytochrome P450(cam) and toluene dioxygenase, catalyze the dechlorination of polyhalogenated C2 compounds. Seven genes encoding those functional enzyme complexes were coexpressed in a Pseudomonas and shown to metabolize pentachloroethane to nonhalogenated organic acids that were metabolized further to carbon dioxide. In another example, the enzyme catalyzing the dechlorination of the herbicide atrazine was subjected to iterative DNA shuffling to produce mutations. By using a plate screening assay, mutated atrazine chlorohydrolase that catalyzed a more rapid dechlorination of atrazine was obtained. The mutant genes were sequences and found to encode up to 11 amino acid changes. Atrazine chlorohydrolase is currently being used in a model municipal water treatment system to test the feasibility of using enzymes for atrazine decontamination. These data suggest that the natural diversity of bacterial catabolic enzymes provides the starting point for improved biocatalytic systems that meet the needs of commercial applications.

Original languageEnglish (US)
Pages (from-to)142-152
Number of pages11
JournalAnnals of the New York Academy of Sciences
Volume864
DOIs
StatePublished - 1998

Fingerprint Dive into the research topics of 'Directed evolution of new enzymes and pathways for environmental biocatalysis'. Together they form a unique fingerprint.

Cite this