TY - JOUR

T1 - Direct detection of dark matter in the minimal supersymmetric standard model with non-universal Higgs boson masses

AU - Ellis, John

AU - Ferstl, Andy

AU - Olive, Keith A.

AU - Santoso, Yudi

N1 - Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.

PY - 2003

Y1 - 2003

N2 - We calculate dark matter scattering rates in the minimal supersymmetric extension of the standard model (MSSM), allowing the soft supersymmetry-breaking masses of the Higgs multiplets, [Formula Presented] to be nonuniversal (NUHM). Compared with the constrained MSSM (CMSSM) in which [Formula Presented] are required to be equal to the soft supersymmetry-breaking masses [Formula Presented] of the squark and slepton masses, we find that the elastic scattering cross sections may be up to two orders of magnitude larger than values in the CMSSM for similar lightest supersymmetric particle masses. We find the following preferred ranges for the spin-independent cross section, [Formula Presented] and, for the spin-dependent cross section, [Formula Presented] with the lower bound on [Formula Presented] dependent on using the putative constraint from the muon anomalous magnetic moment. We stress the importance of incorporating accelerator and dark matter constraints in restricting the NUHM parameter space, and also of requiring that no undesirable vacuum appear below the grand unified theory (GUT) scale. In particular, values of the spin-independent cross section another order of magnitude larger would appear to be allowed, for small [Formula Presented] if the GUT vacuum stability requirement were relaxed, and much lower cross-section values would be permitted if the muon anomalous magnetic moment constraint were dropped.

AB - We calculate dark matter scattering rates in the minimal supersymmetric extension of the standard model (MSSM), allowing the soft supersymmetry-breaking masses of the Higgs multiplets, [Formula Presented] to be nonuniversal (NUHM). Compared with the constrained MSSM (CMSSM) in which [Formula Presented] are required to be equal to the soft supersymmetry-breaking masses [Formula Presented] of the squark and slepton masses, we find that the elastic scattering cross sections may be up to two orders of magnitude larger than values in the CMSSM for similar lightest supersymmetric particle masses. We find the following preferred ranges for the spin-independent cross section, [Formula Presented] and, for the spin-dependent cross section, [Formula Presented] with the lower bound on [Formula Presented] dependent on using the putative constraint from the muon anomalous magnetic moment. We stress the importance of incorporating accelerator and dark matter constraints in restricting the NUHM parameter space, and also of requiring that no undesirable vacuum appear below the grand unified theory (GUT) scale. In particular, values of the spin-independent cross section another order of magnitude larger would appear to be allowed, for small [Formula Presented] if the GUT vacuum stability requirement were relaxed, and much lower cross-section values would be permitted if the muon anomalous magnetic moment constraint were dropped.

UR - http://www.scopus.com/inward/record.url?scp=0043130329&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0043130329&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.67.123502

DO - 10.1103/PhysRevD.67.123502

M3 - Article

AN - SCOPUS:0043130329

VL - 67

JO - Physical Review D - Particles, Fields, Gravitation and Cosmology

JF - Physical Review D - Particles, Fields, Gravitation and Cosmology

SN - 1550-7998

IS - 12

ER -