Digital logic with molecular reactions

Research output: Chapter in Book/Report/Conference proceedingConference contribution

42 Scopus citations


This paper presents a methodology for implementing digital logic with molecular reactions based on a bistable mechanism for representing bits. The value of a bit is not determined by the concentration of a single molecular type; rather, it is the comparison of the concentrations of two complementary types that determines if the bit is '0' or '1'. This mechanism is robust: any small perturbation or leakage in the concentrations quickly gets cleared out and the signal value is not affected. Based on this representation for bits, a constituent set of logical components are implemented. These include combinational components - AND, OR, NOR, and XOR - as well as sequential components - D latches and D flip-flops. Using these components, three full-fledged design examples are given: a square-root unit, a binary adder and a linear feedback shift register. DNA-based computation via strand displacement is the target experimental chassis. The designs are validated through simulations of the chemical kinetics. The simulations show that the molecular systems compute digital functions accurately and robustly.

Original languageEnglish (US)
Title of host publication2013 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2013 - Digest of Technical Papers
Number of pages7
StatePublished - 2013
Event2013 32nd IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2013 - San Jose, CA, United States
Duration: Nov 18 2013Nov 21 2013

Publication series

NameIEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD
ISSN (Print)1092-3152


Other2013 32nd IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2013
Country/TerritoryUnited States
CitySan Jose, CA

Bibliographical note

Copyright 2014 Elsevier B.V., All rights reserved.


Dive into the research topics of 'Digital logic with molecular reactions'. Together they form a unique fingerprint.

Cite this