TY - JOUR
T1 - Differential assembly of Rous sarcoma virus tetrameric and octameric intasomes is regulated by the C-terminal domain and tail region of integrase
AU - Bera, Sibes
AU - Pandey, Krishan K.
AU - Aihara, Hideki
AU - Grandgenett, Duane P.
N1 - Publisher Copyright:
© 2018 by The American Society for Pharmacology and Experimental Therapeutics.
PY - 2018/10/19
Y1 - 2018/10/19
N2 - Retrovirus integrase (IN) catalyzes the concerted integration of linear viral DNA ends into chromosomes. The atomic structures of five different retrovirus IN-DNA complexes, termed intasomes, have revealed varying IN subunit compositions ranging from tetramers to octamers, dodecamers, and hexadecamers. Intasomes containing two IN-associated viral DNA ends capable of concerted integration are termed stable synaptic complexes (SSC), and those formed with a viral/targetDNAsubstrate representing the product of strand-transfer reactions are strand-transfer complexes (STC). Here, we investigated the mechanisms associated with the assembly of the Rous sarcoma virus SSC and STC. C-terminal truncations of WT IN (286 residues) indicated a role of the last 18 residues ("tail" region) in assembly of the tetrameric and octameric SSC, physically stabilized by HIV-1 IN strand-transfer inhibitors. Fine mapping through C-terminal truncations and site-directed mutagenesis suggested that at least three residues (Asp-268-Thr-270) past the last-strand in the C-terminal domain (CTD) are necessary for assembly of the octameric SSC. In contrast, the assembly of the octameric STC was independent of the last 18 residues of IN. Single-site substitutions in theCTDaffected the assembly of the SSC, but not necessarily of the STC, suggesting that STC assembly may depend less on specific interactions of the CTD with viral DNA. Additionally, we demonstrate that trans-communication between IN dimer-DNA complexes facilitates the association of native long-terminal repeat (LTR) ends with partially defective LTR ends to produce a hybrid octameric SSC. The differential assembly of the tetrameric and octameric SSC improves our understanding of intasomes.
AB - Retrovirus integrase (IN) catalyzes the concerted integration of linear viral DNA ends into chromosomes. The atomic structures of five different retrovirus IN-DNA complexes, termed intasomes, have revealed varying IN subunit compositions ranging from tetramers to octamers, dodecamers, and hexadecamers. Intasomes containing two IN-associated viral DNA ends capable of concerted integration are termed stable synaptic complexes (SSC), and those formed with a viral/targetDNAsubstrate representing the product of strand-transfer reactions are strand-transfer complexes (STC). Here, we investigated the mechanisms associated with the assembly of the Rous sarcoma virus SSC and STC. C-terminal truncations of WT IN (286 residues) indicated a role of the last 18 residues ("tail" region) in assembly of the tetrameric and octameric SSC, physically stabilized by HIV-1 IN strand-transfer inhibitors. Fine mapping through C-terminal truncations and site-directed mutagenesis suggested that at least three residues (Asp-268-Thr-270) past the last-strand in the C-terminal domain (CTD) are necessary for assembly of the octameric SSC. In contrast, the assembly of the octameric STC was independent of the last 18 residues of IN. Single-site substitutions in theCTDaffected the assembly of the SSC, but not necessarily of the STC, suggesting that STC assembly may depend less on specific interactions of the CTD with viral DNA. Additionally, we demonstrate that trans-communication between IN dimer-DNA complexes facilitates the association of native long-terminal repeat (LTR) ends with partially defective LTR ends to produce a hybrid octameric SSC. The differential assembly of the tetrameric and octameric SSC improves our understanding of intasomes.
UR - http://www.scopus.com/inward/record.url?scp=85055076276&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85055076276&partnerID=8YFLogxK
U2 - 10.1074/jbc.RA118.004768
DO - 10.1074/jbc.RA118.004768
M3 - Article
C2 - 30185621
AN - SCOPUS:85055076276
SN - 0021-9258
VL - 293
SP - 16440
EP - 16452
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 42
ER -