Abstract
Memory B cells formed in response to microbial antigens provide immunity to later infections; however, the inability to detect rare endogenous antigen-specific cells limits current understanding of this process. Using an antigen-based technique to enrich these cells, we found that immunization with a model protein generated B memory cells that expressed isotype-switched immunoglobulins (swIg) or retained IgM. The more numerous IgM+ cells were longer lived than the swIg+ cells. However, swIg+ memory cells dominated the secondary response because of the capacity to become activated in the presence of neutralizing serum immunoglobulin. Thus, we propose that memory relies on swIg+ cells until they disappear and serum immunoglobulin falls to a low level, in which case memory resides with durable IgM+ reserves.
Original language | English (US) |
---|---|
Pages (from-to) | 1203-1207 |
Number of pages | 5 |
Journal | Science |
Volume | 331 |
Issue number | 6021 |
DOIs | |
State | Published - Mar 4 2011 |