Abstract
The different defence strategies of trees against herbivores are very often connected with succession status, leaf life span and the level of secondary metabolites. We examined the effect of simulated leaf grazing on the differences in the leaf life span and defence chemistry of two pioneer tree species that belongs to the same family (Betulaceae), black alder (Alnus glutinosa (L.) Gaertn.) and European white birch (Betula pendula Roth.). At the beginning of the growing season, mature leaves were perforated using a paper punch. The holes removed about 10% of the leaf surface. Each species was represented by six trees - one branch was chosen for perforation and one branch as a control. All leaves were counted every week until their abscission. Additional damages caused by grazing insects were also noted. Undamaged birch leaves were held much longer than those of alder. The average difference in half leaf life span between control and perforated leaves was 28 days in birch and 6 days in alder. The control unperforated alder leaves were significantly (P <0.05) more often grazed by insects than those that were perforated. Leaf perforation in alder increase phenolic concentrations in the new, young leaves. In birch we did not observe these changes. The comparison of alder and birch indicate that the species with similar successional status can have different strategies of leaf defence. The birch leaves were characterized by a longer leaf life span, constitutive defence, a lack of induced defence accumulation of phenolics and earlier shedding of damaged leaves in comparison to the control. The black alder foliage had a shorter leaf life span, induced defence reaction (produced more phenolics after perforation), and only slightly earlier shedding of damaged leaves than the control.
Original language | English (US) |
---|---|
Pages (from-to) | 181-187 |
Number of pages | 7 |
Journal | Polish Journal of Ecology |
Volume | 54 |
Issue number | 2 |
State | Published - 2006 |
Keywords
- Artificial damage
- Black alder
- European white birch
- Insect herbivore
- Leaf life span
- Phenolic compounds