Abstract
Dichotomy between local spins and conjugated electrons spawns various exotic physical phenomena, however, it has mostly been reported in three-dimensional (3D) inorganic systems. We show, for the first time, that a rare 2D metal-organic framework exhibits intriguing dichotomy behavior, which can be directly identified through scanning tunneling microscopy/spectroscopy (STM/STS). In a newly synthesized Cu-hexaiminobenzene [Cu 3 (HAB) 2 ], on the one hand, the Cu 2+ ions form an ideal S - 1/2 antiferromagnetic (AFM) kagome lattice; on the other hand, the conjugated-electrons from the organic ligands produce a frustrated π x,y model on a honeycomb lattice, giving rise to completely dispersionless energy bands around the Fermi level that favour the ferromagnetic (FM) state. Remarkably, the frustrated local spins and conjugated electrons interact through a strong FM Hund's coupling, giving rise to a wide range of intriguing quantum phases. Furthermore, we propose that this dichotomy can be directly characterized through STM/STS measurements due to its special 2D nature, which provides a unique exciting platform to investigate the dichotomy of frustrated spins and electrons in a single lattice.
Original language | English (US) |
---|---|
Pages (from-to) | 955-961 |
Number of pages | 7 |
Journal | Nanoscale |
Volume | 11 |
Issue number | 3 |
DOIs | |
State | Published - Jan 21 2019 |
Bibliographical note
Funding Information:This project was supported by U.S. DOE-BES (Grant No. DE-FG02-04ER46148). W. J. was additionally supported by the NSF-Material Research Science & Engineering Center (Grand No. DMR-1121252). Z. L. was supported by the NSFC under Grant No. 11774196. We thank the CHPC at the University of Utah and DOE-NERSC for providing the computing resources.
Publisher Copyright:
© 2019 The Royal Society of Chemistry.