Diatom-environmental relationships in 64 alkaline southeastern Ontario (Canada) lakes: A diatom-based model for water quality reconstructions

Euan Reavie, John Smol

Research output: Contribution to journalArticlepeer-review

84 Scopus citations


Lake eutrophication is a problem in many areas of Ontario, although the history of nutrient enrichment is poorly documented. The aim of this study was to construct a diatom-based transfer function to infer past phosphorus levels in Ontario lakes using paleolimnological analyses. The relationship between diatom assemblages and limnological conditions was explored from a survey of diatoms preserved in the surface sediments of 64 Southern Ontario lakes, spanning a total phosphorus gradient of 0.004 to 0.054 mg L-1. Over 420 diatom taxa were identified, 98 of which were sufficiently common to be considered in statistical analyses. Canonical correspondence analysis (CCA) determined that pH, ammonium, aluminium, spring total phosphorus (TP), strontium, total nitrogen (TN), maximum depth (MaxZ), chlorophyll a (Chla) and mean depth were significant variables in explaining the variance in the diatom species data. The environmental optima of common diatom taxa for the limnologically important variables (TP, pH, TN, MaxZ, Chla) were calculated using weighted averaging (WA) regression and calibration techniques, and transfer functions were generated. The diatom inference model for spring TP provided a robust reconstructive relationship (r2 = 0.637; RMSE = 0.007 mg L-1; r2boot = 0.466; RMSEboot = 0.010 mg L-1). Other variables, including pH (r2 = 0.702; RMSE = 0.208; r2boot = 0.485; RMSEboot = 0.234), TN (r2 = 0.574; RMSE = 0.0899 mg L-1; r2boot = 0.380; RMSEboot = 0.127 mg L-1) and MaxZ (r2 = 0.554; RMSE = 1.05 m; r2boot = 0.380; RMSEboot = 1.490 m), were also strong, indicating that they may also be reconstructed from fossil diatom communities. This study shows that it is possible to reliably infer lakewater TP and other limnological variables in alkaline Southern Ontario lakes using the WA technique. This method has the potential to aid rehabilitation programs, as it can provide water quality managers with the means to estimate pre-enrichment phosphorus concentrations and an indication of the onset and development of nutrient enrichment in a lake.

Original languageEnglish (US)
Pages (from-to)25-42
Number of pages18
JournalJournal of Paleolimnology
Issue number1
StatePublished - 2001

Bibliographical note

Funding Information:
We thank Joanne Little, Saloni Clerk and Rideau Lakes Authority personnel for help with field work. This work was funded by a Natural Sciences and Engineering Research Council strategic grant to J.P.S. Andy Gemza provided some total phosphorus and Secchi depth data as part of the Ministry of Environment’s Southern Ontario Lake Partner Program (Dip-In project). Don Galloway (Ontario Ministry of Environment and Energy, Kingston office) helped with collection of background data for our study lakes. Personnel at the Ontario Ministry of Environment (Etobicoke, Ontario) performed some of the water chemistry analyses. Three anonymous reviewers provided useful comments on the manuscript.


  • Calibration
  • Diatoms
  • Eutrophication
  • Ontario
  • Phosphorus
  • Training set

Fingerprint Dive into the research topics of 'Diatom-environmental relationships in 64 alkaline southeastern Ontario (Canada) lakes: A diatom-based model for water quality reconstructions'. Together they form a unique fingerprint.

Cite this