Diagonal nematicity in the pseudogap phase of HgBa2CuO4+δ

H. Murayama, Y. Sato, R. Kurihara, S. Kasahara, Y. Mizukami, Y. Kasahara, H. Uchiyama, A. Yamamoto, E. G. Moon, J. Cai, J. Freyermuth, M. Greven, T. Shibauchi, Y. Matsuda

Research output: Contribution to journalArticlepeer-review

44 Scopus citations

Abstract

The pseudogap phenomenon in the cuprates is arguably the most mysterious puzzle in the field of high-temperature superconductivity. The tetragonal cuprate HgBa2CuO4+δ, with only one CuO2 layer per primitive cell, is an ideal system to tackle this puzzle. Here, we measure the magnetic susceptibility anisotropy within the CuO2 plane with exceptionally high-precision magnetic torque experiments. Our key finding is that a distinct two-fold in-plane anisotropy sets in below the pseudogap temperature T*, which provides thermodynamic evidence for a nematic phase transition with broken four-fold symmetry. Surprisingly, the nematic director orients along the diagonal direction of the CuO2 square lattice, in sharp contrast to the bond nematicity along the Cu-O-Cu direction. Another remarkable feature is that the enhancement of the diagonal nematicity with decreasing temperature is suppressed around the temperature at which short-range charge-density-wave formation occurs. Our result suggests a competing relationship between diagonal nematic and charge-density-wave order in HgBa2CuO4+δ.

Original languageEnglish (US)
Article number3282
JournalNature communications
Volume10
Issue number1
DOIs
StatePublished - Dec 1 2019

Bibliographical note

Publisher Copyright:
© 2019, The Author(s).

Fingerprint

Dive into the research topics of 'Diagonal nematicity in the pseudogap phase of HgBa2CuO4+δ'. Together they form a unique fingerprint.

Cite this