TY - GEN
T1 - Development of a fluids laboratory experience in dimensional analysis and similitude applied to vortex shedding from a cylinder in cross-flow
AU - Anderson, Matthew
AU - Shiltz, Dylan
AU - Damm, Christopher
PY - 2013
Y1 - 2013
N2 - A fluids laboratory experience that introduces students to dimensional analysis and similitude was designed and performed in a junior-level first course in fluid mechanics. After students are given an introduction to dimensional analysis, the technique is applied to the phenomenon of vortex shedding from a cylinder in cross-flow. With help from the instructor, lab groups use dimensional analysis to ascertain the relevant dimensionless pi terms associated with the phenomenon. After successfully determining that the pi terms are the Strouhal number and the Reynolds number, experiments are performed to elucidate the general functional relationship between the dimensionless groups. To conduct the experiments, a wind-tunnel apparatus is used in conjunction with a Pitot tube for measurements of free stream velocity and a platinum-plated tungsten hot-wire anemometer for rapid (up to 400 kHz) measurements of velocity fluctuations downstream of the cylinder. Utilizing an oscilloscope in parallel with a high-speed data acquisition system, students are able to determine the vortex shedding frequency by performing a spectral analysis (via Fourier transform) of the downstream velocity measurements at multiple free stream velocities and for multiple cylinder diameters (thus a varying Reynolds number). The students' experimental results were found to agree with relationships found in the technical literature, showing a constant Strouhal number of approximately 0.2 over a wide range of Reynolds numbers. This exercise not only gives students valuable experience in dimensional analysis and design of experiments, it also provides exposure to modern data acquisition and analysis methods.
AB - A fluids laboratory experience that introduces students to dimensional analysis and similitude was designed and performed in a junior-level first course in fluid mechanics. After students are given an introduction to dimensional analysis, the technique is applied to the phenomenon of vortex shedding from a cylinder in cross-flow. With help from the instructor, lab groups use dimensional analysis to ascertain the relevant dimensionless pi terms associated with the phenomenon. After successfully determining that the pi terms are the Strouhal number and the Reynolds number, experiments are performed to elucidate the general functional relationship between the dimensionless groups. To conduct the experiments, a wind-tunnel apparatus is used in conjunction with a Pitot tube for measurements of free stream velocity and a platinum-plated tungsten hot-wire anemometer for rapid (up to 400 kHz) measurements of velocity fluctuations downstream of the cylinder. Utilizing an oscilloscope in parallel with a high-speed data acquisition system, students are able to determine the vortex shedding frequency by performing a spectral analysis (via Fourier transform) of the downstream velocity measurements at multiple free stream velocities and for multiple cylinder diameters (thus a varying Reynolds number). The students' experimental results were found to agree with relationships found in the technical literature, showing a constant Strouhal number of approximately 0.2 over a wide range of Reynolds numbers. This exercise not only gives students valuable experience in dimensional analysis and design of experiments, it also provides exposure to modern data acquisition and analysis methods.
UR - http://www.scopus.com/inward/record.url?scp=84903484654&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84903484654&partnerID=8YFLogxK
U2 - 10.1115/IMECE2013-63570
DO - 10.1115/IMECE2013-63570
M3 - Conference contribution
AN - SCOPUS:84903484654
SN - 9780791856277
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
BT - Education and Globalization
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2013 International Mechanical Engineering Congress and Exposition, IMECE 2013
Y2 - 15 November 2013 through 21 November 2013
ER -