TY - JOUR
T1 - Development and Validation of Noninvasive Magnetic Resonance Relaxometry for the In Vivo Assessment of Tissue-Engineered Graft Oxygenation
AU - Einstein, Samuel A.
AU - Weegman, Bradley P.
AU - Firpo, Meri T.
AU - Papas, Klearchos K.
AU - Garwood, Michael
N1 - Publisher Copyright:
© Copyright 2016, Mary Ann Liebert, Inc.
PY - 2016/11
Y1 - 2016/11
N2 - Techniques to monitor the oxygen partial pressure (pO2) within implanted tissue-engineered grafts (TEGs) are critically necessary for TEG development, but current methods are invasive and inaccurate. In this study, we developed an accurate and noninvasive technique to monitor TEG pO2 utilizing proton (1H) or fluorine (19F) magnetic resonance spectroscopy (MRS) relaxometry. The value of the spin-lattice relaxation rate constant (R1) of some biocompatible compounds is sensitive to dissolved oxygen (and temperature), while insensitive to other external factors. Through this physical mechanism, MRS can measure the pO2 of implanted TEGs. We evaluated six potential MRS pO2 probes and measured their oxygen and temperature sensitivities and their intrinsic R1 values at 16.4 T. Acellular TEGs were constructed by emulsifying porcine plasma with perfluoro-15-crown-5-ether, injecting the emulsion into a macroencapsulation device, and cross-linking the plasma with a thrombin solution. A multiparametric calibration equation containing R1, pO2, and temperature was empirically generated from MRS data and validated with fiber optic (FO) probes in vitro. TEGs were then implanted in a dorsal subcutaneous pocket in a murine model and evaluated with MRS up to 29 days postimplantation. R1 measurements from the TEGs were converted to pO2 values using the established calibration equation and these in vivo pO2 measurements were simultaneously validated with FO probes. Additionally, MRS was used to detect increased pO2 within implanted TEGs that received supplemental oxygen delivery. Finally, based on a comparison of our MRS data with previously reported data, ultra-high-field (16.4 T) is shown to have an advantage for measuring hypoxia with 19F MRS. Results from this study show MRS relaxometry to be a precise, accurate, and noninvasive technique to monitor TEG pO2 in vitro and in vivo.
AB - Techniques to monitor the oxygen partial pressure (pO2) within implanted tissue-engineered grafts (TEGs) are critically necessary for TEG development, but current methods are invasive and inaccurate. In this study, we developed an accurate and noninvasive technique to monitor TEG pO2 utilizing proton (1H) or fluorine (19F) magnetic resonance spectroscopy (MRS) relaxometry. The value of the spin-lattice relaxation rate constant (R1) of some biocompatible compounds is sensitive to dissolved oxygen (and temperature), while insensitive to other external factors. Through this physical mechanism, MRS can measure the pO2 of implanted TEGs. We evaluated six potential MRS pO2 probes and measured their oxygen and temperature sensitivities and their intrinsic R1 values at 16.4 T. Acellular TEGs were constructed by emulsifying porcine plasma with perfluoro-15-crown-5-ether, injecting the emulsion into a macroencapsulation device, and cross-linking the plasma with a thrombin solution. A multiparametric calibration equation containing R1, pO2, and temperature was empirically generated from MRS data and validated with fiber optic (FO) probes in vitro. TEGs were then implanted in a dorsal subcutaneous pocket in a murine model and evaluated with MRS up to 29 days postimplantation. R1 measurements from the TEGs were converted to pO2 values using the established calibration equation and these in vivo pO2 measurements were simultaneously validated with FO probes. Additionally, MRS was used to detect increased pO2 within implanted TEGs that received supplemental oxygen delivery. Finally, based on a comparison of our MRS data with previously reported data, ultra-high-field (16.4 T) is shown to have an advantage for measuring hypoxia with 19F MRS. Results from this study show MRS relaxometry to be a precise, accurate, and noninvasive technique to monitor TEG pO2 in vitro and in vivo.
KW - F-MRS
KW - islet transplantation
KW - oximetry
KW - oxygen measurement
KW - relaxometry
KW - tissue-engineered graft
UR - http://www.scopus.com/inward/record.url?scp=84996614627&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84996614627&partnerID=8YFLogxK
U2 - 10.1089/ten.tec.2016.0106
DO - 10.1089/ten.tec.2016.0106
M3 - Article
C2 - 27758135
AN - SCOPUS:84996614627
SN - 1937-3384
VL - 22
SP - 1009
EP - 1017
JO - Tissue Engineering - Part C: Methods
JF - Tissue Engineering - Part C: Methods
IS - 11
ER -