TY - JOUR
T1 - Development and characterization of anti-Gal B cell receptor transgenic Gal-/- mice
AU - Xu, Hui
AU - Sharma, Ajay
AU - Lei, Ying
AU - Okabe, Jeannine
AU - Wan, Hua
AU - Chong, Anita S.F.
AU - Logan, John S.
AU - Byrne, Guerard W.
PY - 2002/5/27
Y1 - 2002/5/27
N2 - Background. The successful clinical application of pig-to-primate xenotransplantation is currently limited by the development of an acute vascular rejection, which is thought to involve an induced humoral immune response to the galactose α1,3 galactose (α-Gal) antigen. Successful xenotransplantation may require the development of novel methods for removal or neutralization of anti-Gal antibodies and anti-Gal-producing B cells. The large diversity of the B-cell repertoire makes it difficult, however, to isolate and study anti-Gal B-cell development. Methods. We have established a transgenic mouse model for investigating anti-Gal B cells by introducing a transgene encoding both heavy and light chains for an anti-Gal IgM antibody into an α-galactosyltransferase-deficient (Gal-/-) background. We have characterized the frequency, phenotype, and function of transgenic anti-Gal B cells by multiparameter flow cytometric analysis and ELISA. Results. ELISA analysis of serum from animals with the transgene in an α-galactosyltransferase-deficient background (Tg Gal-/-), from transgenic animals with a heterozygous α-galactosyltransferase background (Tg Gal-/+), and from nontransgenic α-galactosyl-transferase-deficient littermates (Gal-/-) demonstrated elevated expression of anti-Gal antibodies in Tg Gal-/- mice compared with nontransgenic Gal-/- animals and a lack of transgene expression in the Tg Gal-/+ mice. Anti-Gal antibody expression in Tg Gal-/- mice could be increased by immunization with an ovalbumin-Gal glycoconjugate in vivo and through stimulation with lipopolysaccharide in vitro. Multiparameter flow cytometric analysis indicates that 50% to 80% of splenic and peritoneal B cells expressed the transgene and excluded endogenous immunoglobulin gene rearrangements. The majority of these B cells expressed anti-Gal receptors on the surface, as identified by staining with a fluorescein isothiocyanate-bovine serum albumin-Gal glycoconjugate. FACS analysis of the Tg Gal-/- B cells identified them as a population of CD21highCD23lowIgMhigh marginal zone B cells in the spleen and CD5-CD23low B1 cells in the peritoneal cavity. Conclusions. These observations suggest that this model can be used to study the regulation of anti-Gal B cells and can establish a reliable source of functional anti-Gal B cells, which could be used to test the effectiveness of α-Gal-specific immunosuppressive reagents.
AB - Background. The successful clinical application of pig-to-primate xenotransplantation is currently limited by the development of an acute vascular rejection, which is thought to involve an induced humoral immune response to the galactose α1,3 galactose (α-Gal) antigen. Successful xenotransplantation may require the development of novel methods for removal or neutralization of anti-Gal antibodies and anti-Gal-producing B cells. The large diversity of the B-cell repertoire makes it difficult, however, to isolate and study anti-Gal B-cell development. Methods. We have established a transgenic mouse model for investigating anti-Gal B cells by introducing a transgene encoding both heavy and light chains for an anti-Gal IgM antibody into an α-galactosyltransferase-deficient (Gal-/-) background. We have characterized the frequency, phenotype, and function of transgenic anti-Gal B cells by multiparameter flow cytometric analysis and ELISA. Results. ELISA analysis of serum from animals with the transgene in an α-galactosyltransferase-deficient background (Tg Gal-/-), from transgenic animals with a heterozygous α-galactosyltransferase background (Tg Gal-/+), and from nontransgenic α-galactosyl-transferase-deficient littermates (Gal-/-) demonstrated elevated expression of anti-Gal antibodies in Tg Gal-/- mice compared with nontransgenic Gal-/- animals and a lack of transgene expression in the Tg Gal-/+ mice. Anti-Gal antibody expression in Tg Gal-/- mice could be increased by immunization with an ovalbumin-Gal glycoconjugate in vivo and through stimulation with lipopolysaccharide in vitro. Multiparameter flow cytometric analysis indicates that 50% to 80% of splenic and peritoneal B cells expressed the transgene and excluded endogenous immunoglobulin gene rearrangements. The majority of these B cells expressed anti-Gal receptors on the surface, as identified by staining with a fluorescein isothiocyanate-bovine serum albumin-Gal glycoconjugate. FACS analysis of the Tg Gal-/- B cells identified them as a population of CD21highCD23lowIgMhigh marginal zone B cells in the spleen and CD5-CD23low B1 cells in the peritoneal cavity. Conclusions. These observations suggest that this model can be used to study the regulation of anti-Gal B cells and can establish a reliable source of functional anti-Gal B cells, which could be used to test the effectiveness of α-Gal-specific immunosuppressive reagents.
UR - http://www.scopus.com/inward/record.url?scp=0037182163&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037182163&partnerID=8YFLogxK
U2 - 10.1097/00007890-200205270-00006
DO - 10.1097/00007890-200205270-00006
M3 - Article
C2 - 12042639
AN - SCOPUS:0037182163
SN - 0041-1337
VL - 73
SP - 1549
EP - 1557
JO - Transplantation
JF - Transplantation
IS - 10
ER -