Abstract
Federated learning has emerged as a privacy-preserving machine learning approach where multiple parties can train a single model without sharing their raw training data. Federated learning typically requires the utilization of multi-party computation techniques to provide strong privacy guarantees by ensuring that an untrusted or curious aggregator cannot obtain isolated replies from parties involved in the training process, thereby preventing potential inference attacks. Until recently, it was thought that some of these secure aggregation techniques were sufficient to fully protect against inference attacks coming from a curious aggregator. However, recent research has demonstrated that a curious aggregator can successfully launch a disaggregation attack to learn information about model updates of a target party. This paper presents DeTrust-FL, an efficient privacy-preserving federated learning framework for addressing the lack of transparency that enables isolation attacks, such as disaggregation attacks, during secure aggregation by assuring that parties' model updates are included in the aggregated model in a private and secure manner. DeTrust-FL proposes a decentralized trust consensus mechanism and incorporates a recently proposed decentralized functional encryption scheme in which all parties agree on a participation matrix before collaboratively generating decryption key fragments, thereby gaining control and trust over the secure aggregation process in a decentralized setting. Our experimental evaluation demonstrates that DeTrust-FL outperforms state-of-the-art FE-based secure multi-party aggregation solutions in terms of training time and reduces the volume of data transferred. In contrast to existing approaches, this is achieved without creating any trust dependency on external trusted entities.
Original language | English (US) |
---|---|
Title of host publication | Proceedings - 2022 IEEE 15th International Conference on Cloud Computing, CLOUD 2022 |
Editors | Claudio Agostino Ardagna, Nimanthi Atukorala, Rajkumar Buyya, Carl K. Chang, Rong N. Chang, Ernesto Damiani, Gargi Banerjee Dasgupta, Fabrizio Gagliardi, Christoph Hagleitner, Dejan Milojicic, Tuan M Hoang Trong, Robert Ward, Fatos Xhafa, Jia Zhang |
Publisher | IEEE Computer Society |
Pages | 417-426 |
Number of pages | 10 |
ISBN (Electronic) | 9781665481373 |
DOIs | |
State | Published - 2022 |
Externally published | Yes |
Event | 15th IEEE International Conference on Cloud Computing, CLOUD 2022 - Barcelona, Spain Duration: Jul 10 2021 → Jul 16 2021 |
Publication series
Name | IEEE International Conference on Cloud Computing, CLOUD |
---|---|
Volume | 2022-July |
ISSN (Print) | 2159-6182 |
ISSN (Electronic) | 2159-6190 |
Conference
Conference | 15th IEEE International Conference on Cloud Computing, CLOUD 2022 |
---|---|
Country/Territory | Spain |
City | Barcelona |
Period | 7/10/21 → 7/16/21 |
Bibliographical note
Publisher Copyright:© 2022 IEEE.
Keywords
- decentralized functional encryption
- decentralized trust
- federated learning
- privacy-enhanced computing
- secure multi-party aggregation