Abstract
Lag time through a combine harvester was investigated using a stationary combine in the laboratory. Grain flow into the machine was modulated using electronically controlled gate valves. Base grain flows ranged from 0.91 to 6.36 kg s-1 in 0.91 kg s-1 steps. Flow perturbations of 0.91, 1.82, and 2.73 kg s-1 were introduced into the combine through a separate conduit. The results showed that lag time varied with the mass flow through the harvester. Grain flow was measured using both an experimental torque-based sensor and an impact plate-type sensor. Lag time was determined using an author-written software program, LagFinder. LagFinder was used to determine lag times for both the grain flow plate and torque-based sensors. Lag time increased with increasing flow rates. Applying varying lag times using a quadratic delay model to yield monitor output could be a simple way to improve the accuracy of yield maps over using constant lag times.
Original language | English (US) |
---|---|
Pages (from-to) | 823-829 |
Number of pages | 7 |
Journal | Transactions of the American Society of Agricultural Engineers |
Volume | 48 |
Issue number | 2 |
State | Published - Mar 2005 |
Keywords
- Lag time
- Precision agriculture
- Yield sensor