Detector fabrication yield for superCDMS Soudan

P. L. Brink, A. J. Anderson, D. Balakishiyeva, D. A. Bauer, J. Beaty, D. Brandt, B. Cabrera, H. Chagani, M. Cherry, J. Cooley, E. Do Couto E Silva, P. Cushman, M. Daal, T. Doughty, E. Figueroa-Feliciano, M. Fritts, G. Godfrey, S. R. Golwala, J. Hall, R. HarrisS. Hertel, B. A. Hines, L. Hsu, M. E. Huber, O. Kamaev, B. Kara, S. A. Kenany, S. W. Leman, R. Mahapatra, V. Mandic, K. A. McCarthy, N. Mirabolfathi, L. Novak, R. Partridge, M. Pyle, H. Qiu, R. Radpour, W. Rau, A. Reisetter, R. Resch, T. Saab, B. Sadoulet, J. Sander, R. Schmitt, R. W. Schnee, S. Scorza, D. N. Seitz, B. Serfass, B. Shank, Anthony N Villano, B. Welliver, J. J. Yen, B. A. Young, J. Zhang

Research output: Contribution to journalArticlepeer-review


The SuperCDMS collaboration is presently operating a 9 kg Ge payload at the Soudan Underground Laboratory in their direct search for dark matter. The Ge detectors utilize double-sided athermal phonon sensors with an interdigitated electrode structure (iZIPs) to reject near-surface electron-recoil events. These detectors each have a mass of 0.6 kg and were fabricated with photolithographic techniques. The detector fabrication advances required and the production yield encountered are described.

Original languageEnglish (US)
Pages (from-to)194-200
Number of pages7
JournalJournal of Low Temperature Physics
Issue number3-4
StatePublished - Aug 2014

Bibliographical note

Funding Information:
Acknowledgments This work is supported in part by the Department of Energy and the National Science Foundation. These iZIP detectors were fabricated in the Stanford Nanofabrication Facility, a member of the National Nanotechnology Infrastructure Network.


  • Cryogenic detectors
  • Dark matter
  • Transition edge sensors


Dive into the research topics of 'Detector fabrication yield for superCDMS Soudan'. Together they form a unique fingerprint.

Cite this