Detection of prostate cancer with multiparametric MRI utilizing the anatomic structure of the prostate

Jin Jin, Lin Zhang, Ethan Leng, Greg Metzger, Joe Koopmeiners

Research output: Contribution to journalArticlepeer-review

1 Scopus citations


Multiparametric magnetic resonance imaging (mpMRI), which combines traditional anatomic and newer quantitative MRI methods, has been shown to result in improved voxel-wise classification of prostate cancer as compared with any single MRI parameter. While these results are promising, substantial heterogeneity in the mpMRI parameter values and voxel-wise prostate cancer risk has been observed both between and within regions of the prostate. This suggests that classification of prostate cancer can potentially be improved by incorporating structural information into the classifier. In this paper, we propose a novel voxel-wise classifier of prostate cancer that accounts for the anatomic structure of the prostate by Bayesian hierarchical modeling, which can be combined with post hoc spatial Gaussian kernel smoothing to account for residual spatial correlation. Our proposed classifier results in significantly improved area under the ROC curve (0.822 vs 0.729, P <.001) and sensitivity corresponding to 90% specificity (0.599 vs 0.429, P <.001), compared with a baseline model that does not account for the anatomic structure of the prostate. Furthermore, the classifier can also be applied on voxels with missing mpMRI parameters, resulting in similar performance, which is an important practical consideration that cannot be easily accommodated using regression-based classifiers. In addition, our classifier achieved high computational efficiency with a closed-form solution for the posterior predictive cancer probability.

Original languageEnglish (US)
Pages (from-to)3214-3229
Number of pages16
JournalStatistics in Medicine
Issue number22
StatePublished - Sep 30 2018

Bibliographical note

Funding Information:
This work was supported by NCIR01 CA155268, NCIP30 CA077598, NIBIBP41 EB015894, and the Assistant Secretary of Defense for Health affairs, through the Prostate Cancer Research Program under Award No. W81XWH-15-1-0478. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the Department of Defense.


  • Bayesian classifier
  • multiparametric magnetic resonance imaging
  • prostate cancer
  • spatial classifier
  • voxel-wise classification

Fingerprint Dive into the research topics of 'Detection of prostate cancer with multiparametric MRI utilizing the anatomic structure of the prostate'. Together they form a unique fingerprint.

Cite this