Detection of Fusarium Head Blight in wheat using a deep neural network and color imaging

Ruicheng Qiu, Ce Yang, Ali Moghimi, Man Zhang, Brian J. Steffenson, Cory D. Hirsch

Research output: Contribution to journalArticlepeer-review

45 Scopus citations

Abstract

Fusarium head blight (FHB) is a devastating disease of wheat worldwide. In addition to reducing the yield of the crop, the causal pathogens also produce mycotoxins that can contaminate the grain. The development of resistant wheat varieties is one of the best ways to reduce the impact of FHB. To develop such varieties, breeders must expose germplasm lines to the pathogen in the field and assess the disease reaction. Phenotyping breeding materials for resistance to FHB is time-consuming, labor-intensive, and expensive when using conventional protocols. To develop a reliable and cost-effective high throughput phenotyping system for assessing FHB in the field, we focused on developing a method for processing color images of wheat spikes to accurately detect diseased areas using deep learning and image processing techniques. Color images of wheat spikes at the milk stage were collected in a shadow condition and processed to construct datasets, which were used to retrain a deep convolutional neural network model using transfer learning. Testing results showed that the model detected spikes very accurately in the images since the coefficient of determination for the number of spikes tallied by manual count and the model was 0.80. The model was assessed, and the mean average precision for the testing dataset was 0.9201. On the basis of the results for spike detection, a new color feature was applied to obtain the gray image of each spike and a modified region-growing algorithm was implemented to segment and detect the diseased areas of each spike. Results showed that the region growing algorithm performed better than the K-means and Otsu's method in segmenting diseased areas. We demonstrated that deep learning techniques enable accurate detection of FHB in wheat based on color image analysis, and the proposed method can effectively detect spikes and diseased areas, which improves the efficiency of the FHB assessment in the field.

Original languageEnglish (US)
Article number2658
JournalRemote Sensing
Volume11
Issue number22
DOIs
StatePublished - Nov 1 2019

Bibliographical note

Funding Information:
The authors are grateful to YoubingWang fromthe University of Minnesota for his instructions in deep learning. We also appreciate the financial support from the China Scholarship Council. The USDA-ARS U.S. Wheat and Barley Scab Initiative (Funding No. 58-5062-8-018) supported this research. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the view of the U.S. Department of Agriculture. The National Natural Science Foundation of China (Grant No. 31971786) and the Industrial Partnership Grants from MnDRIVE Robotics, Sensors and Advanced Manufacturing Initiative also partially funded the project.

Publisher Copyright:
© 2019 by the authors.

Keywords

  • Color imaging
  • Deep neural network
  • Fusarium head blight disease

Fingerprint

Dive into the research topics of 'Detection of Fusarium Head Blight in wheat using a deep neural network and color imaging'. Together they form a unique fingerprint.

Cite this