Detecting fingerprints of landslide drivers: A MaxEnt model

M. Convertino, A. Troccoli, F. Catani

Research output: Contribution to journalArticle

33 Scopus citations

Abstract

Landslides are important geomorphic events that sculpt river basins by eroding hillslopes and providing sediments to coastal areas. However, landslides are also hazardous events for socio-ecological systems in river basins causing enormous biodiversity, economic, and social impacts. We propose a probabilistic spatially explicit model for the prediction of landslide patterns based on a maximum entropy principle model (MAXENT). The model inputs are the centers of mass of historical landslides and environmental variables at the basin scale. The model has only three parameters requiring calibration: the threshold for the network extraction, the trade-off factor between model complexity and accuracy, and the threshold of landslide susceptibility. The calibration on a subset of observations detects the environmental drivers and their relative importance for landslides. We employ the model in the Arno basin, Italy, selected because of its widespread landslide dynamics and the large availability of landslide observations. The model reproduces the size distribution and location of over 27,500 historical landslides for the Arno basin with an accuracy of 86% obtained from the variable-landslide inference on about 37% of observed landslides. Future landslide patterns are predicted for 17 A1B and A2 rainfall scenarios and for a multimodel ensemble from 2000 to 2100. We show that potential landslide hazard is strongly correlated with variation in the 12 and 48 h rainfall with a return time of 10 years. As the climate gets wetter, the average probability of landslides gets higher which is shown by the landslide size distribution. Hence, the landslide size distribution is a fingerprint of the geomorphic effectiveness of rainfall as a function of climate change. MAXENT is proposed as a parsimonious model for the prediction of landslide patterns with respect to more complex models. The need for very accurately sampled and delineated landslides is lower than for other prediction models. Moreover, the model informs about the drivers of landslides and their relative importance without assumptions on the main triggering factors. This is important to inform monitoring of environmental variables. Our modeling approach can enhance the planning of socio-ecological systems in river basins by improving the accuracy of landslide prediction in space and time.

Original languageEnglish (US)
Pages (from-to)1367-1386
Number of pages20
JournalJournal of Geophysical Research: Earth Surface
Volume118
Issue number3
DOIs
StatePublished - Sep 1 2013

Fingerprint Dive into the research topics of 'Detecting fingerprints of landslide drivers: A MaxEnt model'. Together they form a unique fingerprint.

  • Cite this