Detecting and explaining causes from text for a time series event

Dongyeop Kang, Varun Gangal, Ang Lu, Zheng Chen, Eduard Hovy

Research output: Chapter in Book/Report/Conference proceedingConference contribution

16 Scopus citations

Abstract

Explaining underlying causes or effects about events is a challenging but valuable task. We define a novel problem of generating explanations of a time series event by (1) searching cause and effect relationships of the time series with textual data and (2) constructing a connecting chain between them to generate an explanation. To detect causal features from text, we propose a novel method based on the Granger causality of time series between features extracted from text such as N-grams, topics, sentiments, and their composition. The generation of the sequence of causal entities requires a commonsense causative knowledge base with efficient reasoning. To ensure good interpretability and appropriate lexical usage we combine symbolic and neural representations, using a neural reasoning algorithm trained on commonsense causal tuples to predict the next cause step. Our quantitative and human analysis show empirical evidence that our method successfully extracts meaningful causality relationships between time series with textual features and generates appropriate explanation between them.

Original languageEnglish (US)
Title of host publicationEMNLP 2017 - Conference on Empirical Methods in Natural Language Processing, Proceedings
PublisherAssociation for Computational Linguistics (ACL)
Pages2758-2767
Number of pages10
ISBN (Electronic)9781945626838
DOIs
StatePublished - 2017
Externally publishedYes
Event2017 Conference on Empirical Methods in Natural Language Processing, EMNLP 2017 - Copenhagen, Denmark
Duration: Sep 9 2017Sep 11 2017

Publication series

NameEMNLP 2017 - Conference on Empirical Methods in Natural Language Processing, Proceedings

Conference

Conference2017 Conference on Empirical Methods in Natural Language Processing, EMNLP 2017
Country/TerritoryDenmark
CityCopenhagen
Period9/9/179/11/17

Bibliographical note

Publisher Copyright:
© 2017 Association for Computational Linguistics.

Fingerprint

Dive into the research topics of 'Detecting and explaining causes from text for a time series event'. Together they form a unique fingerprint.

Cite this