DESIGN ASPECTS OF SOLAR THERMOCHEMICAL ENGINEERING - A CASE STUDY: TWO-STEP WATER-SPLITTING CYCLE USING THE Fe3O4/FeO REDOX SYSTEM

A. Steinfeld, S. Sanders, R. Palumbo

Research output: Contribution to journalArticlepeer-review

250 Scopus citations

Abstract

We describe a methodology for the initial development of solar thermochemical reactors for converting concentrated solar energy into chemical fuels. It consists of determining the implications that the thermodynamics and kinetics of the chemical transformation have on the initial reactor design. The method is applied for a specific case study: the decomposition of iron oxide above 1875 K, as part of a two-step thermochemical cycle for producing hydrogen from water. We demonstrate that the chemistry of the reaction places important constraints on various engineering design aspects, and we present two reactor concepts that satisfy these constraints. This study addresses the initial steps necessary for the design and development of solar chemical reactors.

Original languageEnglish (US)
Pages (from-to)43-53
Number of pages11
JournalSolar Energy
Volume65
Issue number1
DOIs
StatePublished - Jan 1 1999

Bibliographical note

Funding Information:
We gratefully acknowledge the financial support of BFE-Swiss Federal Office of Energy. We thank D. Wuillemin and A. Meier for their help in the conceptual design of solar reactors, and M. Sturzenegger and E. Steiner for their critical review of the manuscript.

Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.

Fingerprint

Dive into the research topics of 'DESIGN ASPECTS OF SOLAR THERMOCHEMICAL ENGINEERING - A CASE STUDY: TWO-STEP WATER-SPLITTING CYCLE USING THE Fe3O4/FeO REDOX SYSTEM'. Together they form a unique fingerprint.

Cite this