Design and experimental validation of a virtual vehicle control concept for testing hybrid vehicles using a hydrostatic dynamometer

Zhekang Du, Perry Y. Li, Kai Loon Cheong, Thomas R. Chase

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

An approach to control a hydrostatic dynamometer for the Hardware-In-the-Loop (HIL) testing of hybrid vehicles has been developed and experimentally tested. The hydrostatic dynamometer used, which is capable of regeneration, was specifically designed and built in-house to evaluate the fuel economy and control strategy of a hydraulic hybrid vehicle. The control challenge comes from the inertia of the dynamometer being only 3% of that of the actual vehicle so that the dynamometer must apply, in addition to any drag torques, acceleration/deceleration torques related to the difference in inertias. To avoid estimating the acceleration which would be a non-causal operation, a virtual vehicle concept is introduced. The virtual vehicle model generates a reference speed profile which represents the behavior of the actual vehicle if driven on the road. The dynamometer control problem becomes one of enabling the actual vehicle-dyno shaft to track the speed of the virtual vehicle, instead of directly applying a desired torque. A feedback/feedforward controller was designed based upon an experimentally validated dynamic model of the dynamometer. The approach was successfully tested on a power-split hydraulic hybrid vehicle with acceptable speed and torque tracking performance.

Original languageEnglish (US)
Title of host publicationActive Control of Aerospace Structure; Motion Control; Aerospace Control; Assistive Robotic Systems; Bio-Inspired Systems; Biomedical/Bioengineering Applications; Building Energy Systems; Condition Based Monitoring; Control Design for Drilling Automation; Control of Ground Vehicles, Manipulators, Mechatronic Systems; Controls for Manufacturing; Distributed Control; Dynamic Modeling for Vehicle Systems; Dynamics and Control of Mobile and Locomotion Robots; Electrochemical Energy Systems
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791846186
DOIs
StatePublished - 2014
EventASME 2014 Dynamic Systems and Control Conference, DSCC 2014 - San Antonio, United States
Duration: Oct 22 2014Oct 24 2014

Publication series

NameASME 2014 Dynamic Systems and Control Conference, DSCC 2014
Volume1

Other

OtherASME 2014 Dynamic Systems and Control Conference, DSCC 2014
CountryUnited States
CitySan Antonio
Period10/22/1410/24/14

Bibliographical note

Publisher Copyright:
Copyright © 2014 by ASME.

Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.

Fingerprint Dive into the research topics of 'Design and experimental validation of a virtual vehicle control concept for testing hybrid vehicles using a hydrostatic dynamometer'. Together they form a unique fingerprint.

Cite this