TY - JOUR
T1 - Desensitization of cannabinoid-mediated presynaptic inhibition of neurotransmission between rat hippocampal neurons in culture
AU - Kouznetsova, Maria
AU - Kelley, Brooke
AU - Shen, Maoxing
AU - Thayer, Stanley A.
PY - 2002
Y1 - 2002
N2 - Prolonged exposure to cannabinoids results in tolerance in vivo and desensitization of cannabinoid receptors in vitro. We show here that cannabinoid-induced presynaptic inhibition of glutamatergic neurotransmission desensitized after prolonged exposure to the cannabinoid receptor agonist (R)-(+)-[2,3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrrolo-[1,2,3-de] -1,4-benzoxazin-6-yl](1-napthalenyl)methanone monomethanesulfonate (Win55,212-2). Synaptic activity between hippocampal neurons in culture was determined from network-driven increases in intracellular Ca2+ concentration ([Ca2+]i spikes) and excitatory postsynaptic currents. Win55,212-2-induced (100 nM) inhibition partially desensitized after 2 h and completely desensitized after 18- to 24-h exposure. The desensitization could be overcome by higher concentrations of agonist as indicated by a parallel rightward shift of the concentration response curve from an EC50 of 2.7 ± 0.3 nM to 320 ± 147 nM for inhibition of [Ca2+]i spiking and from 43 ± 17 nM to 4505 ± 403 nM for inhibition of synaptic currents, suggesting that this phenomenon may underlie tolerance. Presynaptic expression of dominant negative G-protein-coupled-receptor kinase (GRK2-Lys220Arg) or β-arrestin (319-418) reduced the desensitization produced by 18- to 24-h pretreatment with 100 nM, Win55,212-2 suggesting that desensitization followed the prototypical pathway for G-protein-coupled receptors. Prolonged treatment with Win55,212-2 produced a modest increase in the EC50 for adenosine inhibition of synaptic transmission and pretreatment with cyclopentyladenosine produced a slight increase in the EC50 for Win55,212-2, suggesting a reciprocal ability to produce heterologous desensitization. The long-term changes in synaptic function that accompany chronic cannabinoid exposure will be an important factor in evaluating the therapeutic potential of these drugs and will provide insight into the role of the endocannabinoid system.
AB - Prolonged exposure to cannabinoids results in tolerance in vivo and desensitization of cannabinoid receptors in vitro. We show here that cannabinoid-induced presynaptic inhibition of glutamatergic neurotransmission desensitized after prolonged exposure to the cannabinoid receptor agonist (R)-(+)-[2,3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrrolo-[1,2,3-de] -1,4-benzoxazin-6-yl](1-napthalenyl)methanone monomethanesulfonate (Win55,212-2). Synaptic activity between hippocampal neurons in culture was determined from network-driven increases in intracellular Ca2+ concentration ([Ca2+]i spikes) and excitatory postsynaptic currents. Win55,212-2-induced (100 nM) inhibition partially desensitized after 2 h and completely desensitized after 18- to 24-h exposure. The desensitization could be overcome by higher concentrations of agonist as indicated by a parallel rightward shift of the concentration response curve from an EC50 of 2.7 ± 0.3 nM to 320 ± 147 nM for inhibition of [Ca2+]i spiking and from 43 ± 17 nM to 4505 ± 403 nM for inhibition of synaptic currents, suggesting that this phenomenon may underlie tolerance. Presynaptic expression of dominant negative G-protein-coupled-receptor kinase (GRK2-Lys220Arg) or β-arrestin (319-418) reduced the desensitization produced by 18- to 24-h pretreatment with 100 nM, Win55,212-2 suggesting that desensitization followed the prototypical pathway for G-protein-coupled receptors. Prolonged treatment with Win55,212-2 produced a modest increase in the EC50 for adenosine inhibition of synaptic transmission and pretreatment with cyclopentyladenosine produced a slight increase in the EC50 for Win55,212-2, suggesting a reciprocal ability to produce heterologous desensitization. The long-term changes in synaptic function that accompany chronic cannabinoid exposure will be an important factor in evaluating the therapeutic potential of these drugs and will provide insight into the role of the endocannabinoid system.
UR - http://www.scopus.com/inward/record.url?scp=0036179562&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036179562&partnerID=8YFLogxK
U2 - 10.1124/mol.61.3.477
DO - 10.1124/mol.61.3.477
M3 - Article
C2 - 11854427
AN - SCOPUS:0036179562
SN - 0026-895X
VL - 61
SP - 477
EP - 485
JO - Molecular Pharmacology
JF - Molecular Pharmacology
IS - 3
ER -