Desensitization of cannabinoid-mediated presynaptic inhibition of neurotransmission between rat hippocampal neurons in culture

Maria Kouznetsova, Brooke Kelley, Maoxing Shen, Stanley A. Thayer

Research output: Contribution to journalArticlepeer-review

81 Scopus citations

Abstract

Prolonged exposure to cannabinoids results in tolerance in vivo and desensitization of cannabinoid receptors in vitro. We show here that cannabinoid-induced presynaptic inhibition of glutamatergic neurotransmission desensitized after prolonged exposure to the cannabinoid receptor agonist (R)-(+)-[2,3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrrolo-[1,2,3-de] -1,4-benzoxazin-6-yl](1-napthalenyl)methanone monomethanesulfonate (Win55,212-2). Synaptic activity between hippocampal neurons in culture was determined from network-driven increases in intracellular Ca2+ concentration ([Ca2+]i spikes) and excitatory postsynaptic currents. Win55,212-2-induced (100 nM) inhibition partially desensitized after 2 h and completely desensitized after 18- to 24-h exposure. The desensitization could be overcome by higher concentrations of agonist as indicated by a parallel rightward shift of the concentration response curve from an EC50 of 2.7 ± 0.3 nM to 320 ± 147 nM for inhibition of [Ca2+]i spiking and from 43 ± 17 nM to 4505 ± 403 nM for inhibition of synaptic currents, suggesting that this phenomenon may underlie tolerance. Presynaptic expression of dominant negative G-protein-coupled-receptor kinase (GRK2-Lys220Arg) or β-arrestin (319-418) reduced the desensitization produced by 18- to 24-h pretreatment with 100 nM, Win55,212-2 suggesting that desensitization followed the prototypical pathway for G-protein-coupled receptors. Prolonged treatment with Win55,212-2 produced a modest increase in the EC50 for adenosine inhibition of synaptic transmission and pretreatment with cyclopentyladenosine produced a slight increase in the EC50 for Win55,212-2, suggesting a reciprocal ability to produce heterologous desensitization. The long-term changes in synaptic function that accompany chronic cannabinoid exposure will be an important factor in evaluating the therapeutic potential of these drugs and will provide insight into the role of the endocannabinoid system.

Original languageEnglish (US)
Pages (from-to)477-485
Number of pages9
JournalMolecular Pharmacology
Volume61
Issue number3
DOIs
StatePublished - 2002

Fingerprint

Dive into the research topics of 'Desensitization of cannabinoid-mediated presynaptic inhibition of neurotransmission between rat hippocampal neurons in culture'. Together they form a unique fingerprint.

Cite this