TY - JOUR
T1 - Derivatives of plant phenolic compound affect the type III secretion system of Pseudomonas aeruginosa via a GacS-GacA two-component signal transduction system
AU - Yamazaki, Akihiro
AU - Li, Jin
AU - Zeng, Quan
AU - Khokhani, Devanshi
AU - Hutchins, William C.
AU - Yost, Angela C.
AU - Biddle, Eulandria
AU - Toone, Eric J.
AU - Chen, Xin
AU - Yang, Ching Hong
PY - 2012/1
Y1 - 2012/1
N2 - Antibiotic therapy is the most commonly used strategy to control pathogenic infections; however, it has contributed to the generation of antibiotic-resistant bacteria. To circumvent this emerging problem, we are searching for compounds that target bacterial virulence factors rather than their viability. Pseudomonas aeruginosa, an opportunistic human pathogen, possesses a type III secretion system (T3SS) as one of the major virulence factors by which it secretes and translocates T3 effector proteins into human host cells. The fact that this human pathogen also is able to infect several plant species led us to screen a library of phenolic compounds involved in plant defense signaling and their derivatives for novel T3 inhibitors. Promoter activity screening of exoS, which encodes a T3-secreted toxin, identified two T3 inhibitors and two T3 inducers of P. aeruginosa PAO1. These compounds alter exoS transcription by affecting the expression levels of the regulatory small RNAs RsmY and RsmZ. These two small RNAs are known to control the activity of carbon storage regulator RsmA, which is responsible for the regulation of the key T3SS regulator ExsA. As RsmY and RsmZ are the only targets directly regulated by GacA, our results suggest that these phenolic compounds affect the expression of exoS through the GacSA-RsmYZ-RsmA-ExsA regulatory pathway.
AB - Antibiotic therapy is the most commonly used strategy to control pathogenic infections; however, it has contributed to the generation of antibiotic-resistant bacteria. To circumvent this emerging problem, we are searching for compounds that target bacterial virulence factors rather than their viability. Pseudomonas aeruginosa, an opportunistic human pathogen, possesses a type III secretion system (T3SS) as one of the major virulence factors by which it secretes and translocates T3 effector proteins into human host cells. The fact that this human pathogen also is able to infect several plant species led us to screen a library of phenolic compounds involved in plant defense signaling and their derivatives for novel T3 inhibitors. Promoter activity screening of exoS, which encodes a T3-secreted toxin, identified two T3 inhibitors and two T3 inducers of P. aeruginosa PAO1. These compounds alter exoS transcription by affecting the expression levels of the regulatory small RNAs RsmY and RsmZ. These two small RNAs are known to control the activity of carbon storage regulator RsmA, which is responsible for the regulation of the key T3SS regulator ExsA. As RsmY and RsmZ are the only targets directly regulated by GacA, our results suggest that these phenolic compounds affect the expression of exoS through the GacSA-RsmYZ-RsmA-ExsA regulatory pathway.
UR - http://www.scopus.com/inward/record.url?scp=84455161872&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84455161872&partnerID=8YFLogxK
U2 - 10.1128/AAC.00732-11
DO - 10.1128/AAC.00732-11
M3 - Article
C2 - 21968370
AN - SCOPUS:84455161872
SN - 0066-4804
VL - 56
SP - 36
EP - 43
JO - Antimicrobial agents and chemotherapy
JF - Antimicrobial agents and chemotherapy
IS - 1
ER -