Density functional tight-binding studies of carbon nanotube structures

Zenaida Peralta-Inga, Sylke Boyd, Jane S. Murray, Charles J. O'Connor, Peter Politzer

Research output: Contribution to journalArticlepeer-review

45 Scopus citations

Abstract

A density functional tight-binding self-consistent charge approach has been used to study the structures and elastic properties of nine model carbon nanotubes of different helicities and diameters between 5.5 and 10.8 A. The systems contain from 112 to 268 atoms and were optimized under periodic boundary conditions in the axial direction. Both the carbon networks and the overall tube dimensions were optimized. Most of the C-C bond lengths are slightly lengthened relative to graphene (two-dimensional graphite); the others remain essentially the same or are shorter. There is overall a longitudinal compression of the tube. The strain energy per atom, relative to graphene, varies inversely with the square of the tube radius. The Young's moduli decrease with increasing radius but do not depend upon chirality. The Poisson ratios are nearly constant. The consequences of removing an electron from each system were also investigated. In most instances, the tube dimensions were little affected; in only a few cases is there a change in length or radius (positive or negative) as large as 0.10%. The Young's moduli remain the same as for the neutral systems, but the Poisson ratios tend to increase for metals and semimetals and to decrease for semiconductors.

Original languageEnglish (US)
Pages (from-to)431-443
Number of pages13
JournalStructural Chemistry
Volume14
Issue number5
DOIs
StatePublished - Oct 2003
Externally publishedYes

Bibliographical note

Funding Information:
We thank Dr. Kevin Boyd for the graphics software, Dr. Th. Frauenheim for the DFTB-SCC code, and the referee for very constructive comments. We appreciate the support provided by the Advanced Materials Research Institute through DARPA Grant No. MDA 972-97-1-0003.

Keywords

  • Carbon nanotubes
  • Density functional tight-binding calculations (DFTB-SCC)
  • Structural properties

Fingerprint

Dive into the research topics of 'Density functional tight-binding studies of carbon nanotube structures'. Together they form a unique fingerprint.

Cite this