TY - JOUR
T1 - Density-functional theory and hybrid density-functional theory continuum solvation models for aqueous and organic solvents
T2 - Universal SM5.43 and SM5.43R solvation models for any fraction of Hartree-Fock exchange
AU - Thompson, Jason D.
AU - Cramer, Christopher J.
AU - Truhlar, Donald G.
PY - 2005/3
Y1 - 2005/3
N2 - Hybrid density functional theory, which is a combined Hartree-Fock and density functional method, provides a simple but effective way to incorporate nonlocal exchange effects and static and dynamical correlation energy into an orbital-based theory with affordable computational cost for many important problems of gas-phase chemistry. The inclusion of a reaction field representing an implicit solvent in a self-consistent hybrid density functional calculation provides an effective and efficient way to extend this approach to problems of liquid-phase chemistry. In previous work, we have parameterized several models based on this approach, and in the present article, we present several new parameterizations based on implicit solvation models SM5.43 and SM5.43R. In particular, we extend the applicability of these solvation models to several combinations of the MPWX hybrid-density functional with various one-electron basis sets, where MPWX denotes a combination of Barone and Adamo's modified version of Perdew and Wang's exchange functional, Perdew and Wang's correlation functional, and a percentage X of exact Hartree-Fock exchange. SM5.43R parameter optimizations are presented for the MPWX/MIDI!, MPWX/MIDI!6D, and MPWX/ 6-31+G(d,p) combinations with X = 0 (i.e., pure density functional theory), 25, 42.8, and 60.6, and for MPWX/ 6-31G(d) and MPWX/6-31+G(d), with X = 0, 42.8, and 60.6; this constitutes a total of 18 new parameter sets. [Note that parameter optimizations using MPW25/ 6-31G(d) and MPW25/6-31+G(d) were carried out in a previous SM5.43R parameterization.] For each of the five basis sets, we found no significant loss in the accuracy of the model when parameters averaged over the four values of X are used instead of the parameters optimized for a specific value of X. Therefore for each of the five basis sets used here, the SM5.43R and SM5.43 models are defined to have a single parameter set that can be used for any value of X between 0 and 60.6. The new models yield accurate free energies of solvation for a broad range of solutes in both water and organic solvents. On the average, the mean-unsigned errors, as compared with those from experiment, of the free energies of solvation of neutral solutes range from 0.50 to 0.55 kcal/mol and those for ions range from 4.5 to 4.9 kcal/mol. Since the SM5.43R model computes the free energy of solvation as a sum of bulk-electrostatic and non-bulk-electrostatic contributions, it may be used for detailed analysis of the physical effects underlying a calculation of the free energy of solvation. Several calculations illustrating the partitioning of these contributions for a variety of solutes in n-hexadecane, 1-octanol, and water are presented.
AB - Hybrid density functional theory, which is a combined Hartree-Fock and density functional method, provides a simple but effective way to incorporate nonlocal exchange effects and static and dynamical correlation energy into an orbital-based theory with affordable computational cost for many important problems of gas-phase chemistry. The inclusion of a reaction field representing an implicit solvent in a self-consistent hybrid density functional calculation provides an effective and efficient way to extend this approach to problems of liquid-phase chemistry. In previous work, we have parameterized several models based on this approach, and in the present article, we present several new parameterizations based on implicit solvation models SM5.43 and SM5.43R. In particular, we extend the applicability of these solvation models to several combinations of the MPWX hybrid-density functional with various one-electron basis sets, where MPWX denotes a combination of Barone and Adamo's modified version of Perdew and Wang's exchange functional, Perdew and Wang's correlation functional, and a percentage X of exact Hartree-Fock exchange. SM5.43R parameter optimizations are presented for the MPWX/MIDI!, MPWX/MIDI!6D, and MPWX/ 6-31+G(d,p) combinations with X = 0 (i.e., pure density functional theory), 25, 42.8, and 60.6, and for MPWX/ 6-31G(d) and MPWX/6-31+G(d), with X = 0, 42.8, and 60.6; this constitutes a total of 18 new parameter sets. [Note that parameter optimizations using MPW25/ 6-31G(d) and MPW25/6-31+G(d) were carried out in a previous SM5.43R parameterization.] For each of the five basis sets, we found no significant loss in the accuracy of the model when parameters averaged over the four values of X are used instead of the parameters optimized for a specific value of X. Therefore for each of the five basis sets used here, the SM5.43R and SM5.43 models are defined to have a single parameter set that can be used for any value of X between 0 and 60.6. The new models yield accurate free energies of solvation for a broad range of solutes in both water and organic solvents. On the average, the mean-unsigned errors, as compared with those from experiment, of the free energies of solvation of neutral solutes range from 0.50 to 0.55 kcal/mol and those for ions range from 4.5 to 4.9 kcal/mol. Since the SM5.43R model computes the free energy of solvation as a sum of bulk-electrostatic and non-bulk-electrostatic contributions, it may be used for detailed analysis of the physical effects underlying a calculation of the free energy of solvation. Several calculations illustrating the partitioning of these contributions for a variety of solutes in n-hexadecane, 1-octanol, and water are presented.
UR - http://www.scopus.com/inward/record.url?scp=17044407592&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=17044407592&partnerID=8YFLogxK
U2 - 10.1007/s00214-004-0614-z
DO - 10.1007/s00214-004-0614-z
M3 - Article
AN - SCOPUS:84962469019
SN - 1432-881X
VL - 113
SP - 107
EP - 131
JO - Theoretical Chemistry Accounts
JF - Theoretical Chemistry Accounts
IS - 2
ER -