Dense subgraph extraction with application to community detection

Jie Chen, Yousef Saad

Research output: Contribution to journalArticle

130 Scopus citations

Abstract

This paper presents a method for identifying a set of dense subgraphs of a given sparse graph. Within the main applications of this dense subgraph problem, the dense subgraphs are interpreted as communities, as in, e.g., social networks. The problem of identifying dense subgraphs helps analyze graph structures and complex networks and it is known to be challenging. It bears some similarities with the problem of reordering/blocking matrices in sparse matrix techniques. We exploit this link and adapt the idea of recognizing matrix column similarities, in order to compute a partial clustering of the vertices in a graph, where each cluster represents a dense subgraph. In contrast to existing subgraph extraction techniques which are based on a complete clustering of the graph nodes, the proposed algorithm takes into account the fact that not every participating node in the network needs to belong to a community. Another advantage is that the method does not require to specify the number of clusters; this number is usually not known in advance and is difficult to estimate. The computational process is very efficient, and the effectiveness of the proposed method is demonstrated in a few real-life examples.

Original languageEnglish (US)
Article number5677532
Pages (from-to)1216-1230
Number of pages15
JournalIEEE Transactions on Knowledge and Data Engineering
Volume24
Issue number7
DOIs
StatePublished - Jun 6 2012

Keywords

  • Dense subgraph
  • community
  • hierarchical clustering
  • matrix reordering
  • partial clustering
  • social network

Fingerprint Dive into the research topics of 'Dense subgraph extraction with application to community detection'. Together they form a unique fingerprint.

Cite this