Delivery of CdiA Nuclease Toxins into Target Cells during Contact-Dependent Growth Inhibition

Julia S. Webb, Kiel C. Nikolakakis, Julia L.E. Willett, Stephanie K. Aoki, Christopher S. Hayes, David A. Low

Research output: Contribution to journalArticlepeer-review

51 Scopus citations

Abstract

Bacterial contact-dependent growth inhibition (CDI) is mediated by the CdiB/CdiA family of two-partner secretion proteins. CDI systems deploy a variety of distinct toxins, which are contained within the polymorphic C-terminal region (CdiA-CT) of CdiA proteins. Several CdiA-CTs are nucleases, suggesting that the toxins are transported into the target cell cytoplasm to interact with their substrates. To analyze CdiA transfer to target bacteria, we used the CDI system of uropathogenic Escherichia coli 536 (UPEC536) as a model. Antibodies recognizing the amino- and carboxyl-termini of CdiAUPEC536 were used to visualize transfer of CdiA from CDIUPEC536+ inhibitor cells to target cells using fluorescence microscopy. The results indicate that the entire CdiAUPEC536 protein is deposited onto the surface of target bacteria. CdiAUPEC536 transfer to bamA101 mutants is reduced, consistent with low expression of the CDI receptor BamA on these cells. Notably, our results indicate that the C-terminal CdiA-CT toxin region of CdiAUPEC536 is translocated into target cells, but the N-terminal region remains at the cell surface based on protease sensitivity. These results suggest that the CdiA-CT toxin domain is cleaved from CdiAUPEC536 prior to translocation. Delivery of a heterologous Dickeya dadantii CdiA-CT toxin, which has DNase activity, was also visualized. Following incubation with CDI+ inhibitor cells targets became anucleate, showing that the D.dadantii CdiA-CT was delivered intracellularly. Together, these results demonstrate that diverse CDI toxins are efficiently translocated across target cell envelopes.

Original languageEnglish (US)
Article numbere57609
JournalPloS one
Volume8
Issue number2
DOIs
StatePublished - Feb 28 2013
Externally publishedYes

Fingerprint

Dive into the research topics of 'Delivery of CdiA Nuclease Toxins into Target Cells during Contact-Dependent Growth Inhibition'. Together they form a unique fingerprint.

Cite this