TY - JOUR
T1 - Deformation patterns and their stability in finitely strained circular cell honeycombs
AU - Combescure, Christelle
AU - Elliott, Ryan S.
AU - Triantafyllidis, Nicolas
N1 - Publisher Copyright:
© 2020 Elsevier Ltd
PY - 2020/9
Y1 - 2020/9
N2 - The mechanics of cellular honeycombs—part of the rapidly growing field of architected materials—in addition to its importance for engineering applications has a great theoretical interest due to the complex bifurcation mechanisms leading to failure in these nonlinear structures of high initial symmetry. Of particular interest to this work are the deformation patterns and their stability of finitely strained circular cell honeycomb. Given the high degree of symmetry of these structures, the introduction of numerical imperfections is inadequate for the study of their behavior past the onset of first bifurcation. Thus, we further develop and explain a group-theoretic approach to investigate their deformation patterns, a consistent and general methodology that systematically finds bifurcated equilibrium orbits and their stability. We consider two different geometric arrangements, hexagonal and square, biaxial compression along loading paths, either aligned or at an angle with respect to the axes of orthotropy, and different constitutive laws for the cell walls which can undergo arbitrarily large rotations, as required by the finite macroscopic strains applied. We find that the first bifurcation in biaxially loaded hexagonal honeycombs of infinite extent always corresponds to a local mode, which is then followed to find the deformation pattern and its stability. Depending on load path orientation, these first bifurcations can be simple, double or even triple. All bifurcated orbits found are unstable and have a maximum load close to their point of emergence. In contrast, the corresponding instability in square honeycombs always corresponds to a global mode and hence the deformation pattern will depend on specimen size and boundary conditions.
AB - The mechanics of cellular honeycombs—part of the rapidly growing field of architected materials—in addition to its importance for engineering applications has a great theoretical interest due to the complex bifurcation mechanisms leading to failure in these nonlinear structures of high initial symmetry. Of particular interest to this work are the deformation patterns and their stability of finitely strained circular cell honeycomb. Given the high degree of symmetry of these structures, the introduction of numerical imperfections is inadequate for the study of their behavior past the onset of first bifurcation. Thus, we further develop and explain a group-theoretic approach to investigate their deformation patterns, a consistent and general methodology that systematically finds bifurcated equilibrium orbits and their stability. We consider two different geometric arrangements, hexagonal and square, biaxial compression along loading paths, either aligned or at an angle with respect to the axes of orthotropy, and different constitutive laws for the cell walls which can undergo arbitrarily large rotations, as required by the finite macroscopic strains applied. We find that the first bifurcation in biaxially loaded hexagonal honeycombs of infinite extent always corresponds to a local mode, which is then followed to find the deformation pattern and its stability. Depending on load path orientation, these first bifurcations can be simple, double or even triple. All bifurcated orbits found are unstable and have a maximum load close to their point of emergence. In contrast, the corresponding instability in square honeycombs always corresponds to a global mode and hence the deformation pattern will depend on specimen size and boundary conditions.
KW - A. Bifurcation
KW - A. Buckling instability
KW - B. Cellular solids
KW - C. Energy methods
KW - C. Group theory
UR - http://www.scopus.com/inward/record.url?scp=85086078485&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85086078485&partnerID=8YFLogxK
U2 - 10.1016/j.jmps.2020.103976
DO - 10.1016/j.jmps.2020.103976
M3 - Article
AN - SCOPUS:85086078485
SN - 0022-5096
VL - 142
JO - Journal of the Mechanics and Physics of Solids
JF - Journal of the Mechanics and Physics of Solids
M1 - 103976
ER -