Definition of the common and divergent steps in carbapenem β-lactam antibiotic biosynthesis

Micah J. Bodner, Rongfeng Li, Ryan M. Phelan, Michael F. Freeman, Kristos A. Moshos, Evan P. Lloyd, Craig A. Townsend

Research output: Contribution to journalArticlepeer-review

32 Scopus citations


Approximately 50 naturally occurring carbapenem β-lactam antibiotics are known. All but one of these have been isolated from Streptomyces species and are disubstituted structural variants of a simple core that is synthesized by Pectobacterium carotovorum (Erwinia carotovora), a phylogenetically distant plant pathogen. While the biosynthesis of the simple carbapenem, (5R)-carbapen-2-em-3-carboxylic acid, is impressively efficient requiring only three enzymes, CarA, CarB and CarC, the formation of thienamycin, one of the former group of metabolites from Streptomyces, is markedly more complex. Despite their phylogenetic separation, bioinformatic analysis of the encoding gene clusters suggests that the two pathways could be related. Here we demonstrate with gene swapping, stereochemical and kinetics experiments that CarB and CarA and their S. cattleya orthologues, ThnE and ThnM, respectively, are functionally and stereochemically equivalent, although their catalytic efficiencies differ. The biosynthetic pathways, therefore, to thienamycin, and likely to the other disubstituted carbapenems, and to the simplest carbapenem, (5R)-carbapen-2-em-3-carboxylic acid, are initiated in the same manner, but share only two common steps before diverging.

Original languageEnglish (US)
Pages (from-to)2159-2165
Number of pages7
Issue number14
StatePublished - Sep 19 2011


  • Beta-lactam antibiotics
  • Biosynthesis
  • Carbapenems
  • Enzyme catalysis
  • Thienamycin


Dive into the research topics of 'Definition of the common and divergent steps in carbapenem β-lactam antibiotic biosynthesis'. Together they form a unique fingerprint.

Cite this