Deep-ultraviolet transparent conducting SrSnO 3 via heterostructure design

Fengdeng Liu, Zhifei Yang, David Abramovitch, Silu Guo, Andre Mkhoyan, Marco Bernardi, Bharat Jalan

Research output: Contribution to journalArticlepeer-review

Abstract

Exploration and advancements in ultrawide bandgap (UWBG) semiconductors are pivotal for next-generation high-power electronics and deep-ultraviolet (DUV) optoelectronics. Here, we used a thin heterostructure design to facilitate high conductivity due to the low electron mass and relatively weak electron-phonon coupling, while the atomically thin films ensured high transparency. We used a heterostructure comprising SrSnO3/La:SrSnO3/GdScO3 (110), and applied electrostatic gating, which allow us to effectively separate charge carriers in SrSnO3 from dopants and achieve phonon-limited transport behavior in strain-stabilized tetragonal SrSnO3. This led to a modulation of carrier density from 1018 to 1020 cm-3, with room temperature mobilities ranging from 40 to 140 cm2 V-1 s-1. The phonon-limited mobility, calculated from first principles, closely matched experimental results, suggesting that room temperature mobility could be further increased with higher electron density. In addition, the sample exhibited 85% optical transparency at a 300-nm wavelength. These findings highlight the potential of heterostructure design for transparent UWBG semiconductor applications, especially in DUV regime.

Original languageEnglish (US)
Article numbereadq7892
Pages (from-to)eadq7892
JournalScience Advances
Volume10
Issue number44
DOIs
StatePublished - Nov 1 2024

Bibliographical note

Publisher Copyright:
Copyright © 2024 the Authors, some rights reserved.

MRSEC Support

  • Partial

PubMed: MeSH publication types

  • Journal Article

Fingerprint

Dive into the research topics of 'Deep-ultraviolet transparent conducting SrSnO 3 via heterostructure design'. Together they form a unique fingerprint.

Cite this