Abstract
A residual (r) control chart of asymmetrical and non-normal binary response variable with highly correlated explanatory variables is proposed in this research. To avoid multicollinearity between multiple explanatory variables, we employ and compare a neural network regression model and deep learning regression model using Bayesian variable selection (BVS), principal component analysis (PCA), nonlinear PCA (NLPCA) or whole multiple explanatory variables. The advantage of our r control chart is able to process both non-normal and correlated multivariate explanatory variables by employing a neural network model and deep learning model. We prove that the deep learning r control chart is relatively efficient to monitor the simulated and real binary response asymmetric data compared with r control chart of the generalized linear model (GLM) with probit and logit link functions and neural network r control chart.
Original language | English (US) |
---|---|
Article number | 1389 |
Journal | Symmetry |
Volume | 13 |
Issue number | 8 |
DOIs | |
State | Published - Jul 31 2021 |
Bibliographical note
Funding Information:Funding: This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. NRF-2020R1F1A1A01056987).
Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Keywords
- Bayesian variable selection
- Binary data
- Nonlinear PCA
- PCA
- Residual control chart