Abstract
Leaf litter may be an important source of nutrients to stormwater and ultimately contribute to eutrophication of surface waters associated with urbanization. Thus, understanding decomposition and nutrient release from leaf litter that falls on impervious surfaces is important for stormwater management. However, few studies have examined leaf litter decomposition in the unique urban environment of the street gutter. We compared decomposition of leaf litter of five street tree species in a parking lot gutter in St. Paul, Minnesota, USA. In contrast to our expectations, comparisons with past studies revealed that litter decomposed more rapidly in the gutter than in nearby natural areas. And decomposition rates were as rapid as those measured in other urban settings (forests and streams), with most species losing 80 % of their initial mass after 1 year. Litter of most species had retained more than half of its initial N and P after 1 year. However, in contrast to N, litter P dynamics largely were uncoupled from litter mass dynamics, with litter P increasing and decreasing unpredictably over the year. Short-term (24 h) laboratory studies revealed that litter had the potential to lose a high fraction of its initial P, with high variation among species (from 27 to 88 %), and a smaller fraction of its initial N (<10 %) via leaching. Thus, street tree species may differ in their potential contributions to nutrients that are released during decomposition. Our results suggest that careful selection of street tree species and timely removal of litterfall have significant potential to reduce nutrient fluxes from streets to storm drains, particularly for P.
Original language | English (US) |
---|---|
Pages (from-to) | 369-385 |
Number of pages | 17 |
Journal | Urban Ecosystems |
Volume | 17 |
Issue number | 2 |
DOIs | |
State | Published - Jun 2014 |
Bibliographical note
Funding Information:Acknowledgments We thank Karin Sather and John Brockgreitens for useful discussion and help in the laboratory and Claire Baglien, Ayeza Jamil, Cathleen Nguyen, Grace Park, Madhvi Patel, and Jennifer Pederson for assistance. This research was supported by an Environmental Protection Agency Section 319(h) Program grant and a University of Minnesota Discovery Grant.
Keywords
- Leaf litter decomposition
- Nitrogen
- Phosphorus
- Street tree
- Urban