Abstract
Many patients with mental illnesses characterized by impaired cognitive control have no relief from gold-standard clinical treatments resulting in a pressing need for new alternatives. This paper develops a neural decoder to detect task engagement in ten human subjects during a conflict-based behavioral task known as the multi-source interference task (MSIT). Task engagement is of particular interest here because closed-loop brain stimulation during those states can augment decision-making. The functional connectivity patterns of the electrodes are extracted. A principal component analysis of these patterns is carried out and the ranked principal components are used as inputs to train subject-specific linear support vector machine classifiers. In this paper, we show that task engagement can be differentiated from background brain activity with a median accuracy of 89.7%. This was accomplished by constructing distributed functional networks from local field potentials recording during the task performance. A further challenge is that goal-directed efforts take place over higher temporal resolution. Task engagement must thus be detected at a similar rate for proactive intervention. We show that our algorithms can detect task engagement from neural recordings in less than 2 seconds; this can be further improved using an application-specific device.
Original language | English (US) |
---|---|
Pages (from-to) | 451-454 |
Number of pages | 4 |
Journal | Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference |
Volume | 2021 |
DOIs | |
State | Published - Nov 1 2021 |
PubMed: MeSH publication types
- Journal Article
- Research Support, N.I.H., Extramural
- Research Support, Non-U.S. Gov't
- Research Support, U.S. Gov't, Non-P.H.S.