Decentralized Safe Reactive Planning under TWTL Specifications

Ryan Peterson, Ali Tevfik Buyukkocak, Derya Aksaray, Yasin Yazicioglu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

13 Scopus citations

Abstract

We investigate a multi-agent planning problem, where each agent aims to achieve an individual task while avoiding collisions with others. We assume that each agent's task is expressed as a Time-Window Temporal Logic (TWTL) specification defined over a 3D environment. We propose a decentralized receding horizon algorithm for online planning of trajectories. We show that when the environment is sufficiently connected, the resulting agent trajectories are always safe (collision-free) and lead to the satisfaction of the TWTL specifications or their finite temporal relaxations. Accordingly, deadlocks are always avoided and each agent is guaranteed to safely achieve its task with a finite time-delay in the worst case. Performance of the proposed algorithm is demonstrated via numerical simulations and experiments with quadrotors.

Original languageEnglish (US)
Title of host publication2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6599-6604
Number of pages6
ISBN (Electronic)9781728162126
DOIs
StatePublished - Oct 24 2020
Event2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020 - Las Vegas, United States
Duration: Oct 24 2020Jan 24 2021

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020
Country/TerritoryUnited States
CityLas Vegas
Period10/24/201/24/21

Bibliographical note

Funding Information:
*This work was supported by Honeywell Aerospace and MnDRIVE.

Publisher Copyright:
© 2020 IEEE.

Fingerprint

Dive into the research topics of 'Decentralized Safe Reactive Planning under TWTL Specifications'. Together they form a unique fingerprint.

Cite this