TY - JOUR
T1 - Day convolution for ∞-categories
AU - Glasman, Saul
PY - 2016
Y1 - 2016
N2 - Given symmetric monoidal ∞-categories C and D, subject to mild hypotheses on D, we define an ∞-categorical analog of the Day convolution symmetric monoidal structure on the functor category Fun(C,D). An E∞ monoid for the Day convolution product is a lax monoidal functor from C to D.
AB - Given symmetric monoidal ∞-categories C and D, subject to mild hypotheses on D, we define an ∞-categorical analog of the Day convolution symmetric monoidal structure on the functor category Fun(C,D). An E∞ monoid for the Day convolution product is a lax monoidal functor from C to D.
UR - http://www.scopus.com/inward/record.url?scp=85013420187&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85013420187&partnerID=8YFLogxK
U2 - 10.4310/MRL.2016.v23.n5.a6
DO - 10.4310/MRL.2016.v23.n5.a6
M3 - Article
AN - SCOPUS:85013420187
SN - 1073-2780
VL - 23
SP - 1369
EP - 1385
JO - Mathematical Research Letters
JF - Mathematical Research Letters
IS - 5
ER -