Abstract
The integration of Distributed Energy Resources (DERs) introduces a non-conventional two-way power flow which cannot be captured well by traditional model-based techniques. This brings an unprecedented challenge in terms of the accurate localization of faults and proper actions of the protection system. In this paper, we propose a data-driven fault localization strategy based on multi-level system regionalization and the quantification of fault detection results in all subsystems/subregions. This strategy relies on the tree segmentation criterion to divide the entire system under study into several subregions, and then combines Support Vector Data Description (SVDD) and Kernel Density Estimation (KDE) to find the confidence level of fault detection in each subregion in terms of their corresponding p-values. By comparing the p-values, one can accurately localize the faults. Experiments demonstrate that the proposed data-driven fault localization can greatly improve the accuracy of fault localization for distribution systems with high DER penetration.
Original language | English (US) |
---|---|
Article number | 275 |
Journal | Energies |
Volume | 13 |
Issue number | 1 |
DOIs | |
State | Published - Jan 6 2020 |
Externally published | Yes |
Bibliographical note
Funding Information:This work was supported in part by Shenzhen Fundamental Research Fund under Grant No. JCYJ20170411102217994 and Guangdong province under grant No. 2017ZT07X152.
Funding Information:
Funding: This work was supported in part by Shenzhen Fundamental Research Fund under Grant No. JCYJ20170411102217994 and Guangdong province under grant No. 2017ZT07X152.
Publisher Copyright:
© 2020 by the authors.
Keywords
- Distributed Energy Resources (DERs)
- Distribution systems
- Fault localization
- Kernel density estimation (KDE)
- Support Vector Data Description (SVDD)