Abstract
Daily acute intermittent hypoxia (dAIH) elicits respiratory plasticity, enhancing respiratory motor output and restoring breathing capacity after incomplete cervical spinal injuries (cSCI). We hypothesized that dAIH-induced functional recovery of breathing capacity would occur after both acute (2 weeks) and chronic (8 weeks) cSCI, but through distinct cellular mechanisms. Specifically, we hypothesized that dAIH-induced breathing recovery would occur through serotonin-independent mechanisms 2wks post C2 cervical hemisection (C2Hs), versus serotonin-dependent mechanisms 8wks post C2Hs. In two independent studies, dAIH or sham (normoxia) was initiated 1 week (Study 1) or 7 weeks (Study 2) post-C2Hs to test our hypothesis. Rats were pre-treated with intra-peritoneal vehicle or methysergide, a broad-spectrum serotonin receptor antagonist, to determine the role of serotonin signaling in dAIH-induced functional recovery. Our data support the hypothesis that dAIH-induced recovery of breathing capacity transitions from a serotonin-independent mechanism with acute C2Hs to a serotonin-dependent mechanism with chronic C2Hs. An understanding of shifting mechanisms giving rise to dAIH-induced respiratory motor plasticity is vital for clinical translation of dAIH as a therapeutic modality.
Original language | English (US) |
---|---|
Pages (from-to) | 50-57 |
Number of pages | 8 |
Journal | Respiratory Physiology and Neurobiology |
Volume | 256 |
DOIs | |
State | Published - Oct 2018 |
Bibliographical note
Publisher Copyright:© 2017 Elsevier B.V.
Keywords
- Adenosine
- Intermittent hypoxia
- Long-term facilitation
- Phrenic
- Plasticity
- Serotonin
- Spinal cord injury