Cystic fibrosis transmembrane conductance regulator is involved in airway epithelial wound repair

Katherine R. Schiller, Peter J. Maniak, Scott M. O'Grady

Research output: Contribution to journalArticlepeer-review

71 Scopus citations


The role of cystic fibrosis (CF) transmembrane conductance regulator (CFTR) in airway epithelial wound repair was investigated using normal human bronchial epithelial (NHBE) cells and a human airway epithelial cell line (Calu-3) of serous gland origin. Measurements of wound repair were performed using continuous impedance sensing to determine the time course for wound closure. Control experiments showed that the increase in impedance corresponding to cell migration into the wound was blocked by treatment with the actin polymerization inhibitor, cytochalasin D. Time lapse imaging revealed that NHBE and Calu-3 cell wound closure was dependent on cell migration, and that movement occurred as a collective sheet of cells. Selective inhibition of CFTR activity with CFTR inh-172 or short hairpin RNA silencing of CFTR expression produced a significant delay in wound repair. The CF cell line UNCCF1T also exhibited significantly slower migration than comparable normal airway epithelial cells. Inhibition of CFTR-dependent anion transport by treatment with CFTR inh-172 slowed wound closure to the same extent as silencing CFTR protein expression, indicating that ion transport by CFTR plays a critical role in migration. Moreover, morphologic analysis of migrating cells revealed that CFTR inhibition or silencing significantly reduced lamellipodia protrusion. These findings support the conclusion that CFTR participates in airway epithelial wound repair by a mechanism involving anion transport that is coupled to the regulation of lamellipodia protrusion at the leading edge of the cell.

Original languageEnglish (US)
Pages (from-to)C912-C921
JournalAmerican Journal of Physiology - Cell Physiology
Issue number5
StatePublished - Nov 2010


  • Cell migration
  • Lamellipodia
  • Wound healing


Dive into the research topics of 'Cystic fibrosis transmembrane conductance regulator is involved in airway epithelial wound repair'. Together they form a unique fingerprint.

Cite this