CYP2C9 Genotype-Dependent Warfarin Pharmacokinetics: Impact of CYP2C9 Genotype on R- and S-Warfarin and Their Oxidative Metabolites

Darcy R. Flora, Allan E. Rettie, Richard C. Brundage, Timothy S. Tracy

Research output: Contribution to journalArticlepeer-review

55 Scopus citations

Abstract

Multiple factors can impact warfarin therapy, including genetic variations in the drug-metabolizing enzyme cytochrome P450 2C9 (CYP2C9). Compared with individuals with the wild-type allele, CYP2C9*1, carriers of the common *3 variant have significantly impaired CYP2C9 metabolism. Genetic variations in CYP2C9, the primary enzyme governing the metabolic clearance of the more potent S-enantiomer of the racemic anticoagulant warfarin, may impact warfarin–drug interactions. To establish a baseline for such studies, plasma and urine concentrations of R- and S-warfarin and 10 warfarin metabolites were monitored for up to 360 hours following a 10-mg warfarin dose in healthy subjects with 4 different CYP2C9 genotypes: CYP2C9*1/*1 (n = 8), CYP2C9*1/*3 (n = 9), CYP2C9*2/*3 (n = 3), and CYP2C9*3/*3 (n = 4). Plasma clearance of S-warfarin, but not R-warfarin, decreased multiexponentially and in a CYP2C9 gene-dependent manner: 56%, 70%, and 75% for CYP2C9*1/*3, CYP2C9*2/*3, and CYP2C9*3/*3 genotypes, respectively, compared with CYP2C9*1/*1, resulting in pronounced differences in the S:R ratio that identified warfarin-sensitive genotypes. CYP2C9 was the primary P450 enzyme contributing to S-warfarin metabolism and a minor contributor to R-warfarin metabolism. In the presence of a defective CYP2C9 allele, switching of warfarin metabolism to other oxidative pathways and P450 enzymes for the metabolic elimination of S-warfarin was not observed. The 10-hydroxywarfarin metabolites, whose detailed pharmacokinetics are reported for the first time, exhibited a prolonged half-life with no evidence of renal excretion and displayed elimination rate-limited kinetics. Understanding the impact of CYP2C9 genetics on warfarin pharmacokinetics lays the foundation for future genotype-dependent warfarin–drug interaction studies.

Original languageEnglish (US)
Pages (from-to)382-393
Number of pages12
JournalJournal of Clinical Pharmacology
Volume57
Issue number3
DOIs
StatePublished - Mar 2017

Bibliographical note

Publisher Copyright:
© 2016, The American College of Clinical Pharmacology

Keywords

  • CYP2C9
  • pharmacogenetics
  • pharmacokinetics
  • warfarin

Fingerprint

Dive into the research topics of 'CYP2C9 Genotype-Dependent Warfarin Pharmacokinetics: Impact of CYP2C9 Genotype on R- and S-Warfarin and Their Oxidative Metabolites'. Together they form a unique fingerprint.

Cite this