Curvature growth of some 4-dimensional gradient Ricci soliton singularity models

Bennett Chow, Michael Freedman, Henry Shin, Yongjia Zhang

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

In this note we discuss estimates for the curvature of 4-dimensional gradient Ricci soliton singularity models by applying Perelman's point selection, a fundamental result of Cheeger and Naber, and topological lemmas.

Original languageEnglish (US)
Article number107303
JournalAdvances in Mathematics
Volume372
DOIs
StatePublished - Oct 7 2020

Bibliographical note

Publisher Copyright:
© 2020 Elsevier Inc.

Keywords

  • Asymptotically locally Euclidean manifold
  • Gradient Ricci soliton
  • Ricci flat
  • Ricci flow
  • Singularity model

Fingerprint

Dive into the research topics of 'Curvature growth of some 4-dimensional gradient Ricci soliton singularity models'. Together they form a unique fingerprint.

Cite this