TY - JOUR
T1 - Current and future technology for minimally invasive ablation of renal cell carcinoma
AU - Duffey, Branden G.
AU - Anderson, Kyle
PY - 2010/7
Y1 - 2010/7
N2 - Purpose of Review: To provide an overview of the technologic advancements in the field of ablative therapy, focusing on the treatment of renal neoplasms. Materials and Methods: A MEDLINE search was performed using each specific ablative technique name as the search term. Articles written in the English language were selected for review. In cases of multiple reports by a single institution, the most recent report was utilized. Pertinent articles specific to the technologic advancement in ablative therapy were selected for review. Recent Findings: Intermediate-term oncologic outcomes of radiofrequency ablation (RFA) and cryoablation (CA) for the treatment of small renal masses are encouraging. For thermal therapies, molecular adjuvants to enhance cellular kill and local control have been developed. Improvements in microwave technology have allowed for reductions in antenna size and increases in ablation size. Laparoscopic high-intensity focused ultrasound (HIFU) probes have been developed to overcome the limitations of transcutaneous energy delivery, but HIFU remains experimental for the treatment of renal lesions. Irreversible electroporation (IRE), a novel nonthermal ablative technique, is currently undergoing clinical investigation in human subjects. Histotripsy causes mechanical destruction of targeted tissue and shows promise in treating renal and prostate pathology. Summary: Ablative techniques are commonly utilized in the primary treatment of urologic malignancies. The purpose of this review is to discuss technologic advances in ablative therapies with emphasis on the treatment of renal masses. RFA and CA show acceptable intermediate-term efficacy and technical refinement continues. Emerging technologies, including microwave thermotherapy, IRE, HIFU and histotripsy, are described with emphasis on the mechanism of cellular kill, energy delivery, and stage in clinical development.
AB - Purpose of Review: To provide an overview of the technologic advancements in the field of ablative therapy, focusing on the treatment of renal neoplasms. Materials and Methods: A MEDLINE search was performed using each specific ablative technique name as the search term. Articles written in the English language were selected for review. In cases of multiple reports by a single institution, the most recent report was utilized. Pertinent articles specific to the technologic advancement in ablative therapy were selected for review. Recent Findings: Intermediate-term oncologic outcomes of radiofrequency ablation (RFA) and cryoablation (CA) for the treatment of small renal masses are encouraging. For thermal therapies, molecular adjuvants to enhance cellular kill and local control have been developed. Improvements in microwave technology have allowed for reductions in antenna size and increases in ablation size. Laparoscopic high-intensity focused ultrasound (HIFU) probes have been developed to overcome the limitations of transcutaneous energy delivery, but HIFU remains experimental for the treatment of renal lesions. Irreversible electroporation (IRE), a novel nonthermal ablative technique, is currently undergoing clinical investigation in human subjects. Histotripsy causes mechanical destruction of targeted tissue and shows promise in treating renal and prostate pathology. Summary: Ablative techniques are commonly utilized in the primary treatment of urologic malignancies. The purpose of this review is to discuss technologic advances in ablative therapies with emphasis on the treatment of renal masses. RFA and CA show acceptable intermediate-term efficacy and technical refinement continues. Emerging technologies, including microwave thermotherapy, IRE, HIFU and histotripsy, are described with emphasis on the mechanism of cellular kill, energy delivery, and stage in clinical development.
KW - Kidney
KW - kidney cancer
KW - kidney neoplasm
UR - http://www.scopus.com/inward/record.url?scp=77957929494&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77957929494&partnerID=8YFLogxK
U2 - 10.4103/0970-1591.70584
DO - 10.4103/0970-1591.70584
M3 - Article
C2 - 21116364
AN - SCOPUS:77957929494
SN - 0970-1591
VL - 26
SP - 410
EP - 417
JO - Indian Journal of Urology
JF - Indian Journal of Urology
IS - 3
ER -