Crystalline Dieudonné theory over excellent schemes

A. J. De Jong, W. Messing

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

We write double-struck D for the crystalline Dieudonné module functor on p-divisible groups over a base S of characteristic p. The main results are: the full faithfulness of double-struck D over excellent local complete intersection schemes, and the full faithfulness of double-struck D up to isogeny when S is local excellent. We make use of the desingularization of D. Pospescu and the extension theorem of A.J. de Jong.

Original languageEnglish (US)
Pages (from-to)333-348
Number of pages16
JournalBulletin de la Societe Mathematique de France
Volume127
Issue number2
DOIs
StatePublished - 1999

Keywords

  • Barsotti-Tate groups
  • Crystalline Dieudonné module theory
  • p-divisible groups

Fingerprint Dive into the research topics of 'Crystalline Dieudonné theory over excellent schemes'. Together they form a unique fingerprint.

Cite this