CrowdMask: Using Crowds to Preserve Privacy in Crowd-Powered Systems via Progressive Filtering

Harmanpreet Kaur, Mitchell Gordon, Yiwei Yang, Jeffrey P. Bigham, Jaime Teevan, Ece Kamar, Walter S. Lasecki

Research output: Chapter in Book/Report/Conference proceedingConference contribution

19 Scopus citations

Abstract

Crowd-powered systems leverage human intelligence to go beyond the capabilities of automated systems, but also introduce privacy and security concerns because unknown people must view the data that the system processes. While automated approaches cannot robustly filter private information from these datasets, people have the ability to do so if the risk from them viewing the data can be mitigated. We present a crowd-powered approach to masking private content in data by segmenting and distributing smaller segments to crowd workers so that individual workers can identify potentially private content without being able to fully view it themselves. We introduce a novel pyramid workflow for segmentation that uses segments at multiple levels of granularity to overcome problems with fixed-sized approaches. We implement our approach in CrowdMask, a system that allows images with potentially sensitive content to be masked by appearing in progressively larger, more identifiable segments, and masking portions of the image as soon as a risk is identified. Our experiments with 4134 Mechanical Turk workers show that Crowd- Mask can effectively mask private content from images without revealing sensitive content to constituent workers, while still enabling future systems to use the filtered result.

Original languageEnglish (US)
Title of host publicationProceedings of the 5th AAAI Conference on Human Computation and Crowdsourcing, HCOMP 2017
EditorsSteven Dow, Adam Tauman
PublisherAAAI press
Pages89-97
Number of pages9
ISBN (Electronic)9781577357933
StatePublished - Oct 27 2017
Externally publishedYes
Event5th AAAI Conference on Human Computation and Crowdsourcing, HCOMP 2017 - Quebec City, Canada
Duration: Oct 24 2017Oct 26 2017

Publication series

NameProceedings of the 5th AAAI Conference on Human Computation and Crowdsourcing, HCOMP 2017

Conference

Conference5th AAAI Conference on Human Computation and Crowdsourcing, HCOMP 2017
Country/TerritoryCanada
CityQuebec City
Period10/24/1710/26/17

Bibliographical note

Publisher Copyright:
Copyright © 2017, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

Fingerprint

Dive into the research topics of 'CrowdMask: Using Crowds to Preserve Privacy in Crowd-Powered Systems via Progressive Filtering'. Together they form a unique fingerprint.

Cite this