Cross-scale covariance for material property prediction

Benjamin A. Jasperson, Ilia Nikiforov, Amit Samanta, Fei Zhou, Ellad B. Tadmor, Vincenzo Lordi, Vasily V. Bulatov

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

A simulation can stand its ground against an experiment only if its prediction uncertainty is known. The unknown accuracy of interatomic potentials (IPs) is a major source of prediction uncertainty, severely limiting the use of large-scale classical atomistic simulations in a wide range of scientific and engineering applications. Here we explore covariance between predictions of metal plasticity, from 178 large-scale (~108 atoms) molecular dynamics (MD) simulations, and a variety of indicator properties computed at small-scales (≤102 atoms). All simulations use the same 178 IPs. In a manner similar to statistical studies in public health, we analyze correlations of strength with indicators, identify the best predictor properties, and build a cross-scale “strength-on-predictors” regression model. This model is then used to estimate regression error over the statistical pool of IPs. Small-scale predictors found to be highly covariant with strength are computed using expensive quantum-accurate calculations and used to predict flow strength, within the statistical error bounds established in our study.

Original languageEnglish (US)
Article number1
Journalnpj Computational Materials
Volume11
Issue number1
DOIs
StatePublished - Dec 2025

Bibliographical note

Publisher Copyright:
© The Author(s) 2025.

Fingerprint

Dive into the research topics of 'Cross-scale covariance for material property prediction'. Together they form a unique fingerprint.

Cite this