Cross-linker Chemistry Determines the Uptake Potential of Perfluorinated Alkyl Substances by β-Cyclodextrin Polymers

Leilei Xiao, Casey Ching, Yuhan Ling, Mohammadreza Nasiri, Max J. Klemes, Theresa M. Reineke, Damian E. Helbling, William R. Dichtel

Research output: Contribution to journalArticlepeer-review

57 Scopus citations


Per- A nd poly fluorinated alkyl substances (PFASs), notably perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid, contaminate many ground and surface water resources and are environmentally persistent. Furthermore, there are many other PFASs in use that are persistent and contaminate fresh water resources. A polymer consisting of β-cyclodextrin (β-CD) cross-linked with decafluorobiphenyl (DFB-CDP) has shown promise for sequestering PFOA at environmentally relevant concentrations, though its efficacy to remove other PFASs from water has not yet been explored. Additionally, although the DFB-CDP was designed to sequester PFASs on the basis of favorable fluorous interactions, the rationale for its relatively high affinity for PFOA compared to other previously synthesized β-CD polymers remains unknown. In this study, we explored cross-linker chemistry as a potential determinant of PFAS affinity for β-CD polymers. We synthesized three DFB-CDP derivatives with varying degrees of phenolation in the cross-linker (to evaluate effects of polymer surface charge) along with two β-CD polymers cross-linked by two other chemically distinct strategies, epichlorohydrin and 2-isocyanatoethyl methacrylate. We measured the equilibrium removal of ten PFASs from water by each of the five polymers at environmentally relevant concentrations. We found that β-CD polymers cross-linked by perfluorinated aromatics with low degrees of phenolation are more favorable for PFAS adsorption. These findings provide insight into the mechanism of PFAS adsorption by β-CD-based polymers and will inspire modular designs of β-CD-based adsorbents to target other PFASs and micropollutants.

Original languageEnglish (US)
Pages (from-to)3747-3752
Number of pages6
Issue number10
StatePublished - May 28 2019
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2019 American Chemical Society.


Dive into the research topics of 'Cross-linker Chemistry Determines the Uptake Potential of Perfluorinated Alkyl Substances by β-Cyclodextrin Polymers'. Together they form a unique fingerprint.

Cite this