Abstract
High resolution Fast Fourier Transform (FFT) is important for various applications while increased memory access and parallelism requirement limits the traditional hardware. In this work, we explore acceleration opportunities for high resolution FFTs in spintronic computational RAM (CRAM) which supports true in-memory processing semantics. We experiment with Spin-Torque-Transfer (STT) and Spin-Hall-Effect (SHE) based CRAMs in implementing CRAFFT, a high resolution FFT accelerator in memory. For one million point fixed-point FFT, we demonstrate that CRAFFT can provide up to 2.57× speedup and 673× energy reduction. We also provide a proof-of-concept extension to floating-point FFT.
Original language | English (US) |
---|---|
Title of host publication | 2020 57th ACM/IEEE Design Automation Conference, DAC 2020 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9781450367257 |
DOIs | |
State | Published - Jul 2020 |
Event | 57th ACM/IEEE Design Automation Conference, DAC 2020 - Virtual, San Francisco, United States Duration: Jul 20 2020 → Jul 24 2020 |
Publication series
Name | Proceedings - Design Automation Conference |
---|---|
Volume | 2020-July |
ISSN (Print) | 0738-100X |
Conference
Conference | 57th ACM/IEEE Design Automation Conference, DAC 2020 |
---|---|
Country/Territory | United States |
City | Virtual, San Francisco |
Period | 7/20/20 → 7/24/20 |
Bibliographical note
Funding Information:Acknowledgment ‘is work was supported in part by NSF grant no. SPX[17]-1725420.
Publisher Copyright:
© 2020 IEEE.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.